-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsmspline.py
412 lines (324 loc) · 12.8 KB
/
smspline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import numpy as np
import pandas as pd
from matplotlib import gridspec
from matplotlib import pyplot as plt
from abc import ABCMeta, abstractmethod
from sklearn.utils.extmath import softmax
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils.validation import check_is_fitted
from sklearn.utils import check_X_y
from sklearn.base import BaseEstimator, RegressorMixin, ClassifierMixin, is_classifier, is_regressor
import rpy2
from rpy2 import robjects as ro
from rpy2.robjects import Formula
from rpy2.robjects.packages import importr
from rpy2.robjects import numpy2ri, pandas2ri
numpy2ri.activate()
pandas2ri.activate()
try:
bigsplines = importr("bigsplines")
except:
utils = importr("utils")
utils.install_packages("bigsplines")
bigsplines = importr("bigsplines")
EPSILON = 1e-7
__all__ = ["SMSplineRegressor", "SMSplineClassifier"]
class BaseSMSpline(BaseEstimator, metaclass=ABCMeta):
@abstractmethod
def __init__(self, knot_num=5, degree=3, reg_gamma=1e-5, xmin=-1, xmax=1):
self.knot_num = knot_num
self.degree = degree
self.reg_gamma = reg_gamma if isinstance(reg_gamma, list) else [reg_gamma]
self.xmin = xmin
self.xmax = xmax
def _estimate_density(self, x):
"""method to estimate the density of input data
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
"""
self.density_, self.bins_ = np.histogram(x, bins=10, density=True)
def diff(self, x, order=1, delta=1e-5):
"""method to calculate derivatives of the fitted adaptive spline to the input
Parameters
---------
x : array-like of shape (n_samples, 1)
containing the input dataset
order : int
order of derivative, not larger than 2
delta : float
the small value used for calculating finite difference
"""
if order > self.degree:
raise Exception("order should not be greater than degree")
if isinstance(self.sm_, (np.ndarray, np.int, int, np.floating, float)):
derivative = np.zeros((x.shape[0], 1))
else:
x = np.array(x).reshape(1)
if order == 1:
derivative = (self.decision_function(x + delta / 2) - self.decision_function(x - delta / 2)) / delta
elif order == 2:
derivative = (self.decision_function(x + delta) + self.decision_function(x - delta)
- 2 * self.decision_function(x)) / delta ** 2
else:
raise Exception("higher order derivatives is not supported now.")
return derivative
def visualize(self):
"""draw the fitted shape function
"""
check_is_fitted(self, "sm_")
fig = plt.figure(figsize=(6, 4))
inner = gridspec.GridSpec(2, 1, hspace=0.1, height_ratios=[6, 1])
ax1_main = plt.Subplot(fig, inner[0])
xgrid = np.linspace(self.xmin, self.xmax, 100).reshape([-1, 1])
ygrid = self.decision_function(xgrid)
ax1_main.plot(xgrid, ygrid)
ax1_main.set_xticklabels([])
ax1_main.set_title("Shape Function", fontsize=12)
fig.add_subplot(ax1_main)
ax1_density = plt.Subplot(fig, inner[1])
xint = ((np.array(self.bins_[1:]) + np.array(self.bins_[:-1])) / 2).reshape([-1, 1]).reshape([-1])
ax1_density.bar(xint, self.density_, width=xint[1] - xint[0])
ax1_main.get_shared_x_axes().join(ax1_main, ax1_density)
ax1_density.set_yticklabels([])
ax1_density.autoscale()
fig.add_subplot(ax1_density)
plt.show()
def decision_function(self, x):
"""output f(x) for given samples
Parameters
---------
x : array-like of shape (n_samples, 1)
containing the input dataset
Returns
-------
np.array of shape (n_samples,)
containing f(x)
"""
check_is_fitted(self, "sm_")
x = x.copy()
x[x < self.xmin] = self.xmin
x[x > self.xmax] = self.xmax
if isinstance(self.sm_, (np.ndarray, np.int, int, np.floating, float)):
pred = self.sm_ * np.ones(x.shape[0])
else:
if is_classifier(self):
pred = bigsplines.predict_bigssg(self.sm_, ro.r("data.frame")(x=x))[1]
if is_regressor(self):
pred = bigsplines.predict_bigspline(self.sm_, ro.r("data.frame")(x=x))
return pred
class SMSplineRegressor(BaseSMSpline, RegressorMixin):
"""Base class for Smoothing Spline regression.
Details:
1. This is an API for the well-known R package `bigsplines`, and we call the function bigssa through rpy2 interface.
2. During prediction, the data which is outside of the given `xmin` and `xmax` will be clipped to the boundary.
Parameters
----------
knot_num : int, optional. default=5
the number of knots
degree : int, optional. default=3
the order of the spline, possible values include 1 and 3
reg_gamma : float or list of float, optional. default=0.1
the roughness penalty strength of the spline algorithm, range from 0 to 1.
xmin : float, optional. default=-1
the min boundary of the input
xmax : float, optional. default=1
the max boundary of the input
"""
def __init__(self, knot_num=5, degree=3, reg_gamma=1e-5, xmin=-1, xmax=1):
super(SMSplineRegressor, self).__init__(knot_num=knot_num,
degree=degree,
reg_gamma=reg_gamma,
xmin=xmin,
xmax=xmax)
def _validate_input(self, x, y):
"""method to validate data
Parameters
---------
x : array-like of shape (n_samples, 1)
containing the input dataset
y : array-like of shape (n_samples,)
containing the output dataset
"""
x, y = check_X_y(x, y, accept_sparse=["csr", "csc", "coo"],
multi_output=True, y_numeric=True)
return x, y.ravel()
def get_loss(self, label, pred):
"""method to calculate the cross entropy loss
Parameters
---------
label : array-like of shape (n_samples,)
containing the input dataset
pred : array-like of shape (n_samples,)
containing the output dataset
Returns
-------
float
the cross entropy loss
"""
loss = np.average((label - pred) ** 2, axis=0)
return loss
def fit(self, x, y):
"""fit the smoothing spline
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing target values
Returns
-------
object
self : Estimator instance.
"""
x, y = self._validate_input(x, y)
self._estimate_density(x)
unique_num = len(np.unique(x.round(decimals=6)))
if unique_num <= 1:
self.sm_ = np.mean(y)
else:
kwargs = {"x": x.ravel(),
"y": y.ravel(),
"nknots": self.knot_num,
"type": "lin" if self.degree==1 else "cub",
"lambdas": ro.r("c")(np.array(self.reg_gamma)),
"rparm": 0.01}
self.sm_ = bigsplines.bigspline(**kwargs)
return self
def predict(self, x):
"""output f(x) for given samples
Parameters
---------
x : array-like of shape (n_samples, 1)
containing the input dataset
Returns
-------
np.array of shape (n_samples,)
containing f(x)
"""
pred = self.decision_function(x)
return pred
class SMSplineClassifier(BaseSMSpline, ClassifierMixin):
"""Base class for Smoothing Spline classification.
Details:
1. This is an API for the well-known R package `bigsplines`, and we call the function bigssg through rpy2 interface.
2. During prediction, the data which is outside of the given `xmin` and `xmax` will be clipped to the boundary.
3. reg_gamma will be increased if the current value is too small
Parameters
----------
knot_num : int, optional. default=5
the number of knots
degree : int, optional. default=3
the order of the spline, possible values include 1 and 3
reg_gamma : float or list of float, optional. default=0.1
the roughness penalty strength of the spline algorithm, range from 0 to 1.
xmin : float, optional. default=-1
the min boundary of the input
xmax : float, optional. default=1
the max boundary of the input
"""
def __init__(self, knot_num=5, degree=3, reg_gamma=1e-5, xmin=-1, xmax=1):
super(SMSplineClassifier, self).__init__(knot_num=knot_num,
degree=degree,
reg_gamma=reg_gamma,
xmin=xmin,
xmax=xmax)
def get_loss(self, label, pred):
"""method to calculate the cross entropy loss
Parameters
---------
label : array-like of shape (n_samples,)
containing the input dataset
pred : array-like of shape (n_samples,)
containing the output dataset
Returns
-------
float
the cross entropy loss
"""
with np.errstate(divide="ignore", over="ignore"):
pred = np.clip(pred, EPSILON, 1. - EPSILON)
loss = - np.average(label * np.log(pred) + (1 - label) * np.log(1 - pred), axis=0)
return loss
def _validate_input(self, x, y):
"""method to validate data
Parameters
---------
x : array-like of shape (n_samples, 1)
containing the input dataset
y : array-like of shape (n_samples,)
containing the output dataset
"""
x, y = check_X_y(x, y, accept_sparse=["csr", "csc", "coo"],
multi_output=True)
self._label_binarizer = LabelBinarizer()
self._label_binarizer.fit(y)
self.classes_ = self._label_binarizer.classes_
y = self._label_binarizer.transform(y) * 1.0
return x, y.ravel()
def fit(self, x, y):
"""fit the smoothing spline
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
y : array-like of shape (n_samples,)
containing target values
Returns
-------
object
self : Estimator instance.
"""
x, y = self._validate_input(x, y)
self._estimate_density(x)
unique_num = len(np.unique(x.round(decimals=6)))
if unique_num <= 1:
p = np.clip(np.mean(y), EPSILON, 1. - EPSILON)
self.sm_ = np.log(p / (1 - p))
else:
exit = False
while not exit:
try:
kwargs = {"formula": Formula('y ~ x'),
"family": "binomial",
"nknots": self.knot_num,
"lambdas": ro.r("c")(np.array(self.reg_gamma)),
"rparm": 0.01,
"type": "lin" if self.degree==1 else "cub",
"data": pd.DataFrame({"x": x.ravel(), "y": y.ravel()})}
self.sm_ = bigsplines.bigssg(**kwargs)
exit = True
except rpy2.rinterface_lib.embedded.RRuntimeError:
if isinstance(self.reg_gamma, list):
self.reg_gamma = [v * 10 for v in self.reg_gamma]
else:
self.reg_gamma = self.reg_gamma * 10
return self
def predict_proba(self, x):
"""output probability prediction for given samples
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
Returns
-------
np.array of shape (n_samples, 2)
containing probability prediction
"""
pred = self.decision_function(x)
pred_proba = softmax(np.vstack([-pred, pred]).T / 2, copy=False)
return pred_proba
def predict(self, x):
"""output binary prediction for given samples
Parameters
---------
x : array-like of shape (n_samples, n_features)
containing the input dataset
Returns
-------
np.array of shape (n_samples,)
containing binary prediction
"""
pred_proba = self.predict_proba(x)[:, 1]
return self._label_binarizer.inverse_transform(pred_proba)