-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_graph.py
310 lines (211 loc) · 7.64 KB
/
main_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
#!/usr/bin/env python
# coding: utf-8
import os
import os.path as osp
import copy
import json
import time
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.optim import AdamW
from torch_geometric.loader import DataLoader
from torch_geometric.nn import global_add_pool, global_max_pool, global_mean_pool
from augment import Augment
from model import GNN, MLP, Model
from loss import Bootstrap
from eval import SVMEvaluator
from utils import seed_everything, to_MB
from args import get_graph_params
from dataset import get_graph_clf_dataset
def train(
encoder_model,
loss_model,
dataloader,
optimizer,
scheduler,
aug_rounds=1,
recon_lambda=1,
):
device = next(encoder_model.parameters()).device
encoder_model.train()
total_loss = 0.0
for batch in dataloader:
batch = batch.to(device)
x = batch.x
edge_index = batch.edge_index
edge_attr = None
loss = 0.0
for round in range(aug_rounds):
x1, edge_index1, edge_attr1 = encoder_model.corrupt(
x, edge_index, edge_attr
)
z1 = encoder_model.encode(x1)
h1 = encoder_model.aggregate(z1, edge_index1, edge_attr1)
p1 = encoder_model.predict(z1)
con_loss = loss_model(p1, h1.detach())
loss += con_loss
if recon_lambda != 0:
recon_loss = F.mse_loss(encoder_model.decode(h1), x)
loss += recon_lambda * recon_loss
loss = loss / aug_rounds
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if scheduler:
scheduler.step()
return total_loss / len(dataloader)
def test(encoder_model, dataloader, pooling="mean", clf="svm"):
device = next(encoder_model.parameters()).device
encoder_model.eval()
x_list = []
y_list = []
with torch.no_grad():
start = time.time()
for batch in dataloader:
batch = batch.to(device)
x, y = batch.x, batch.y
z = encoder_model.encode(x)
if pooling == "mean":
z = global_mean_pool(z, batch.batch)
elif pooling == "max":
z = global_max_pool(z, batch.batch)
elif pooling == "sum":
z = global_add_pool(z, batch.batch)
else:
raise NotImplementedError
x_list.append(z.cpu().numpy())
y_list.append(y.cpu().numpy())
end = time.time()
x = np.concatenate(x_list, axis=0)
y = np.concatenate(y_list, axis=0)
inf_time = end - start
if clf == "svm":
result = SVMEvaluator(n_splits=10).evaluate(x=x, y=y)
else:
raise NotImplementedError
result["inf_time"] = inf_time
result["pooling"] = pooling
return result
def main(params):
device = torch.device(
f"cuda:{params['device']}" if torch.cuda.is_available() else "cpu"
)
dataset, (num_features, num_classes) = get_graph_clf_dataset(
params["dataset"], deg4feat=params["deg4feat"]
)
train_loader = DataLoader(dataset, batch_size=params["batch_size"], shuffle=True)
eval_loader = DataLoader(dataset, batch_size=params["batch_size"], shuffle=False)
augmenter = Augment(
feature_mask=params["feature_mask"], edge_mask=params["edge_mask"]
)
mlp_encoder = MLP(
input_dim=num_features,
hidden_dim=params["hidden_dim"],
output_dim=params["hidden_dim"],
activation=nn.PReLU,
num_layers=params["enc_layers"],
residual=params["res_enc"],
norm=params["enc_norm"],
dropout=params["enc_drop"],
).to(device)
# Non-parametric
aggregator = GNN(
input_dim=params["hidden_dim"],
hidden_dim=params["hidden_dim"],
output_dim=params["hidden_dim"],
activation=nn.PReLU,
num_layers=params["proj_layers"],
norm=params["proj_norm"],
dropout=params["proj_drop"],
aggr_norm=params["aggr_norm"],
).to(device)
predictor = MLP(
input_dim=params["hidden_dim"],
hidden_dim=params["pred_dim"],
output_dim=params["hidden_dim"],
activation=nn.PReLU,
num_layers=params["pred_layers"],
residual=False,
norm=params["pred_norm"],
dropout=params["pred_drop"],
).to(device)
decoder = MLP(
input_dim=params["hidden_dim"],
hidden_dim=params["hidden_dim"],
output_dim=num_features,
activation=nn.PReLU,
num_layers=2,
).to(device)
encoder_model = Model(
encoder=mlp_encoder,
aggregator=aggregator,
predictor=predictor,
augmenter=augmenter,
decoder=decoder,
).to(device)
loss_model = Bootstrap(eta=params["eta"], aux_pos_ratio=params["aux_pos_ratio"])
optimizer = AdamW(
params=encoder_model.parameters(),
lr=params["learning_rate"],
weight_decay=params["weight_decay"],
)
if params["use_scheduler"]:
scheduler = lambda epoch: (1 + np.cos(epoch * np.pi / params["epochs"])) * 0.5
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=scheduler)
else:
scheduler = None
best_micro_f1 = -1
best_report_result = {}
train_time = []
inf_time = []
for epoch in range(1, params["epochs"] + 1):
start = time.time()
loss = train(
encoder_model,
loss_model,
dataloader=train_loader,
optimizer=optimizer,
scheduler=scheduler,
aug_rounds=params["aug_rounds"],
recon_lambda=params["recon_lambda"],
)
end = time.time()
train_time.append(end - start)
# Test model performance
if epoch % params["verbose"] == 0:
clf_result = test(
encoder_model, eval_loader, pooling=params["pooling"], clf="svm"
)
inf_time.append(clf_result["inf_time"])
report_result = {
"epoch": epoch,
"loss": np.round(loss, 6),
"micro_f1": np.round(clf_result["micro_f1"], 4),
"macro_f1": np.round(clf_result["macro_f1"], 4),
"micro_f1_std": np.round(clf_result["micro_f1_std"], 4),
"macro_f1_std": np.round(clf_result["macro_f1_std"], 4),
"pooling": clf_result["pooling"],
"default": np.round(clf_result["micro_f1"], 4),
}
print(report_result)
if report_result["micro_f1"] > best_micro_f1:
best_report_result = report_result
best_micro_f1 = report_result["micro_f1"]
max_memory_allocated = torch.cuda.max_memory_allocated(device)
best_report_result["train_time"] = np.mean(train_time)
best_report_result["inf_time"] = np.mean(inf_time)
best_report_result["maximum_memory"] = to_MB(max_memory_allocated)
print("Best results:")
print(best_report_result)
if __name__ == "__main__":
params = get_graph_params()
if params["use_params"]:
param_path = osp.join("param", "graph", f"{params['dataset']}.json")
with open(param_path, "r") as f:
default_params = json.load(f)
params.update(default_params)
seed_everything(params["seed"])
main(params)