-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
216 lines (158 loc) · 7.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import sys
import os, argparse, time, tqdm, random, cv2
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch import nn
from dataset import CustomDataset, postprocess_image, tensor_to_mat
from network import STRNet
from losses import TSDLoss, TRGLoss
random_seed = 123
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(random_seed)
random.seed(random_seed)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--data_path", default='dataset', help="data root path")
parser.add_argument("-e", "--num_epochs", default=100, type=int, help="num epochs")
parser.add_argument("-b", "--batch_size", default=16, type=int, help="batch size > 1")
parser.add_argument("-n", "--num_workers", default=8, type=int, help="num_workers for DataLoader")
parser.add_argument("-sn", "--show_num", default=4, type=int, help="show result images during training num")
args = parser.parse_args()
return args
def load_weights_from_directory(model, weight_path) -> int:
if weight_path.endswith('.pth'):
wp = weight_path
else:
wps = sorted(os.listdir(weight_path), key=lambda x: int(x.split('_')[0]))
if wps:
wp = wps[-1]
else:
return 0
print(f"Loading weights from {wp}...")
model.load_state_dict(torch.load(os.path.join(weight_path, wp)))
return int(wp.split('_')[0])
if __name__ == "__main__":
args = get_args()
### Path
model_path = "results"
weight_path = os.path.join(model_path, "weights")
show_path = os.path.join(model_path, "show")
os.makedirs(model_path, exist_ok=True)
os.makedirs(weight_path, exist_ok=True)
os.makedirs(show_path, exist_ok=True)
### Hyperparameters
epochs = args.num_epochs
batch_size = args.batch_size
if batch_size <= 1:
raise "Batch size should bigger than 1 for batch normalization"
num_workers = args.num_workers
show_num = args.show_num
### DataLoader
dataloader_params = {'batch_size': batch_size,
'shuffle': True,
'drop_last': True,
'num_workers': num_workers}
train_data = CustomDataset(args.data_path, set_name="train")
train_gen = DataLoader(train_data, **dataloader_params)
dataloader_params = {'batch_size': 1,
'shuffle': True,
'drop_last': False,
'num_workers': num_workers}
val_data = CustomDataset(args.data_path, set_name="val")
val_gen = DataLoader(val_data, **dataloader_params)
steps_per_epoch = len(train_gen)
### Model
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device}...")
model = STRNet().to(device)
# load best weight
initial_epoch = load_weights_from_directory(model, weight_path) + 1
print(f"Training start from epoch {initial_epoch}")
# Train Setting
model_optim = Adam(model.parameters(), 0.0001, (0.5, 0.9))
### Train
for epoch in range(initial_epoch, epochs):
## training
train_loss = []
train_discrim_loss = []
model.train()
pgbar = tqdm.tqdm(train_gen, total=len(train_gen))
pgbar.set_description(f"Epoch {epoch}/{epochs}")
for I, Itegt, Mm, Msgt in pgbar:
I, Itegt, Mm, Msgt = I.to(device), Itegt.to(device), Mm.to(device), Msgt.to(device)
# train model
Ms, Ite, Ms_, Ite_ = model.forward(I, Mm)
Ltsd = TSDLoss(Msgt, Ms, Ms_)
Ltrg = TRGLoss(Mm, Ms, Ms_, Itegt, Ite, Ite_)
Lgsn = -torch.mean(model.discrim(Mm, Ite_))
total_loss = Ltsd + Ltrg + Lgsn
model_optim.zero_grad()
total_loss.backward()
model_optim.step()
# train discriminator
Ms, Ite, Ms_, Ite_ = model.forward(I, Mm)
Ldsn = torch.mean(F.relu(1-model.discrim(Mm, Itegt))) + \
torch.mean(F.relu(1+model.discrim(Mm, Ite_)))
model_optim.zero_grad()
Ldsn.backward()
model_optim.step()
ltsd = Ltsd.detach().cpu().item()
ltrg = Ltrg.detach().cpu().item()
lgsn = Lgsn.detach().cpu().item()
train_loss.append(total_loss.detach().cpu().item())
train_discrim_loss.append(Ldsn.detach().cpu().item())
pgbar.set_postfix_str(f"total loss : {train_loss[-1]:.6f} ltsd : {ltsd:.6f} ltrg : {ltrg:.6f} lgsn : {lgsn:.6f} d_loss : {train_discrim_loss[-1]:.6f}")
train_loss = sum(train_loss)/len(train_loss)
## validation
val_loss = []
# will saved in show directory
result_images = []
model.eval()
pgbar = tqdm.tqdm(val_gen, total=len(val_gen))
pgbar.set_description("Validating...")
for I, Itegt, Mm, Msgt in pgbar:
I, Itegt, Mm, Msgt = I.to(device), Itegt.to(device), Mm.to(device), Msgt.to(device)
# train model
Ms, Ite, Ms_, Ite_ = model.forward(I, Mm)
Ltsd = TSDLoss(Msgt, Ms, Ms_)
Ltrg = TRGLoss(Mm, Ms, Ms_, Itegt, Ite, Ite_)
Lgsn = -torch.mean(model.discrim(Mm, Ite_))
total_loss = Ltsd + Ltrg + Lgsn
val_loss.append(total_loss.detach().cpu().item())
pgbar.set_postfix_str(f"loss : {sum(val_loss[-10:]) / len(val_loss[-10:]):.6f}")
if len(result_images) < args.show_num:
result_images.append([I.cpu(), Itegt.cpu(), Ite.cpu(), Ite_.cpu(), Msgt.cpu(), Ms.cpu(), Ms_.cpu()])
else:
break
val_loss = sum(val_loss) / len(val_loss)
## visualize
fig, axs = plt.subplots(args.show_num, 1, figsize=(10, 2*args.show_num))
fig.suptitle("I, Itegt, Ite, Ite_, Msgt, Ms, Ms_]")
for i, (I, Itegt, Ite, Ite_, Msgt, Ms, Ms_) in enumerate(result_images):
I = postprocess_image(tensor_to_mat(I))[0]
Itegt = postprocess_image(tensor_to_mat(Itegt))[0]
Ite = postprocess_image(tensor_to_mat(Ite))[0]
Ite_ = postprocess_image(tensor_to_mat(Ite_))[0]
Msgt = postprocess_image(tensor_to_mat(Msgt))[0]
Ms = postprocess_image(tensor_to_mat(Ms))[0]
Ms_ = postprocess_image(tensor_to_mat(Ms_))[0]
Msgt = cv2.cvtColor(Msgt, cv2.COLOR_GRAY2BGR)
Ms = cv2.cvtColor(Ms, cv2.COLOR_GRAY2BGR)
Ms_ = cv2.cvtColor(Ms_, cv2.COLOR_GRAY2BGR)
axs[i].imshow(np.hstack([I, Itegt, Ite, Ite_, Msgt, Ms, Ms_]))
axs[i].set_xticks([])
axs[i].set_yticks([])
fig.savefig(os.path.join(model_path, "show", f"epoch_{epoch}.png"))
plt.close()
print(f"train_loss : {train_loss}, val_loss : {val_loss}")
print()
time.sleep(0.2)
torch.save(model.state_dict(), os.path.join(weight_path, f"{epoch}_train_{train_loss}_val_{val_loss}.pth"))