-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm_training.m
25 lines (25 loc) · 1.04 KB
/
svm_training.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
function svm_trainer = svm_training(trainData, trainLabel)
% use support vector machine to train data
% input : trainData - attributes set of examples
% trainLabel - label of examples
% output : svm_trainer - svm trainer for each class
% -------------------------------------------------------------------------
numClass = numel(unique(trainLabel)) ;
svm_trainer = cell(numClass, 1) ;
for i=1:numClass
subLabel = zeros(size(trainLabel, 1), 1) ;
subLabel(trainLabel == i, 1) = 1 ;
% choose type
type = 2 ;
switch type
case 1
svm_trainer{i} = fitcsvm(trainData, subLabel, 'kernel_function', 'polynomial', 'polyorder', 1) ;
case 2
svm_trainer{i} = fitcsvm(trainData, subLabel, 'kernel_function', 'polynomial', 'polyorder', 2) ;
case 3
svm_trainer{i} = fitcsvm(trainData, subLabel, 'kernel_function', 'rbf') ;
case 4
svm_trainer{i} = fitcsvm(trainData, subLabel) ;
end
end
end