forked from nishkaks/Capacitated-Vehicle-Routing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
266 lines (210 loc) · 6.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from readvrplib import read_vrplib_file
from NNH import generate_random_solution
from plotsolution import plotsolution
from gurobipy import *
from collections import defaultdict
from itertools import chain, combinations
import time
# Read file name from command line argument
if len(sys.argv) < 2:
print 'Usage: main.py filename'
quit()
file_name = sys.argv[1]
def get_routecst_ksitranspose(route,numnodes):
ksit = [0] * (numnodes+1)
routecst = 0
routelength = len(route)
lastcustomer = 1
for i,cust in enumerate(route[1:]):
ksit[cust] +=1
routecst += distance[cust][lastcustomer]
lastcustomer = cust
return routecst,ksit
def printSolution(m,NumberofVariable):
global optimalroutes
if m.status == GRB.status.OPTIMAL:
print 'Optimal Objective:', m.objVal
iter = 0
for r in range(NumberofVariable):
if y[r].x > 0.0001:
optimalroutes[iter] = routes[r]
iter+=1
print r, y[r].x
else:
print 'No solution'
return optimalroutes
def get_fiq(i,q):
if q < mindemand or q not in qlist:
prev[i,q] = [-99,-99] # dummy
return float('infinity');
elif fiq[i,q] != float('infinity'):
return fiq[i,q]
elif q == demand[i]:
prev[i,q] = [1,q-demand[i]]
fiq[i,q] = c[1][i]
return c[1][i]
else:
mintemp = float('infinity')
minj = 0
for j in range(2,numnodes+1):
if j != i:
temp = get_fiq(j,q-demand[i]) + c[j][i]
#print i,j,q,demand[i],prev[j,q-demand[i]][0]
if i != prev[j,q-demand[i]][0] and temp < mintemp: # the first condition(remove 2-loop) might not be right, Ignores some solutions
mintemp = temp
minj = j
fiq[i,q] = mintemp
if minj != 0:
prev[i,q] = [minj,q-demand[i]]
else:
prev[i,q] = [-99,-99] # dummy
#fiq[i,q] = min((get_fiq(j,q-demand[i]) + c[j][i] for j in range(2,numnodes+1) if j != i)); Not able to extract j here
return fiq[i,q]
def reconstructpath(i,q):
if fiq[i,q] == float('infinity'):
return []
elif q == 0:
return [1]
else:
#print i,q,prev[i,q]
return reconstructpath(prev[i,q][0], prev[i,q][1]) + [i]
(numnodes, coordinates, distance, capacity, demand,numofvehicles) = read_vrplib_file(file_name)
#print distance
start_time = time.clock()
(routes) = generate_random_solution(numnodes, distance, capacity, demand,numofvehicles)
initialroutecount = len(routes)
ksitranspose = defaultdict(list)
routecost = defaultdict(float)
for r in range(initialroutecount):
routecost[r],ksitranspose[r] = get_routecst_ksitranspose(routes[r],numnodes)
#print 'ksitranspose',ksitranspose
#print 'routecost',sum(routecost)
#plotsolution(numnodes,coordinates,routes);
# Model
master = Model("MASTER")
master.modelSense = GRB.MINIMIZE
# Create decision variables
y = {}
for r in range(initialroutecount):
y[r] = master.addVar(lb=0.0, vtype=GRB.CONTINUOUS,obj=routecost[r],name='y_%s' % (r))
# Update model to integrate new variables
master.update()
# constraints
custconstr = {}
for i in range(2,numnodes+1):
custconstr[i] = master.addConstr(
quicksum(ksitranspose[r][i] * y[r] for r in range(initialroutecount)) >= 1,
'cust_%s' % (i))
vehiclecosntr = master.addConstr(
-1 * quicksum(y[r] for r in range(initialroutecount)) >= - numofvehicles,
'vehicle' )
# Solve
master.update()
mindemand = min(demand[i] for i in range(2,numnodes+1))
#Generate the possible values of q
tempq = list(demand.values())
tempq1 = list(demand.values())
stuff = list(demand.values())
stuff.sort()
tempq.sort()
tempq1.sort()
#delete 0
del stuff[0]
del tempq[0]
del tempq1[0]
#print 'tempq',tempq
#print 'stuff',stuff
for i in range(len(tempq)):
if sum(stuff) > capacity:
stuff.pop()
else:
break
print 'stuff2',stuff,sum(stuff)
for L in range(2,len(stuff)+1):
for subset in combinations(tempq1, L):
tempq.append(sum(list(subset)))
# get distinct values
qlist1 = list(set(tempq))
#print 'qlist1',qlist1
# get q which is less than the capacity
qlist = [x for x in qlist1 if x <= capacity]
print qlist
iter = 1
temp = []
while (iter < 100): #Arbitrary for small instances
master.optimize()
#printSolution(master)
pi =[]
pi = [c.Pi for c in master.getConstrs()] # dual variables
theta = pi.pop()
pi.insert(0, 0)
c={}
c = [[0 for col in range(numnodes+1)] for row in range(numnodes+1)]
for i in range(1,numnodes+1):
for j in range(1,numnodes+1):
c[i][j] = distance[i][j] - pi[j-1]
#Dynamic programming
fiq = defaultdict(float)
prev = defaultdict(list)
cgroutes = []
# initial conditions for fiq
for q in qlist:
for i in range(2,numnodes+1):
fiq[i,q] = float('infinity')
for q in qlist:
for i in range(2,numnodes+1):
#print i,q
fiq[i,q] = get_fiq(i,q)
fiq0 = defaultdict(float)
for q in qlist:
for i in range(2,numnodes+1):
fiq0[i,q] = fiq[i,q] + c[i][1]
print 'print fiq0, path'
testcount = 0
for q in qlist:
for i in range(2,numnodes+1):
if fiq0[i,q] < - theta:
temp = reconstructpath(i,q)
temp.append(1) # append depot(1) at the end of the routes
if temp[::-1] not in cgroutes: # check for symmetric routes in an iteration of cg
cgroutes.append(temp)
#print fiq0[i,q],i,q,cgroutes[testcount]
testcount +=1
# Column generation
numcols = len(cgroutes)
if numcols == 0:
print 'numcols 0'
break
oldroutecount = len(routes)
K=oldroutecount
print 'old', len(routecost)
for i in cgroutes:
routecost[K],ksitranspose[K] = get_routecst_ksitranspose(i,numnodes)
routes[K] = i
# add new columns to the master problem
col = Column()
for i in range(2,numnodes+1):
col.addTerms(ksitranspose[K][i], custconstr[i])
col.addTerms(-1,vehiclecosntr)
y[K] = master.addVar(lb=0.0, vtype=GRB.CONTINUOUS,obj=routecost[K], column=col,name='y_%s' % (K))
master.update()
K +=1
print 'new numroutes', len(routecost)
print 'new numvars' ,master.numVars
iter +=1
master.write("VRP"+".lp")
#print 'K,master.numVars',K,master.numVars
# solve IP
# Set variable type back to binary
NumberofVariable = len(routecost)
for i in range(NumberofVariable):
y[i].vType = GRB.BINARY
master.update()
master.optimize()
optimalroutes = defaultdict(list)
optimalroutes = printSolution(master,NumberofVariable)
print optimalroutes
print "Time taken = ",time.clock() - start_time, "seconds"
#plot optimal routes
plotsolution(numnodes,coordinates,optimalroutes);
raw_input("press [enter] to continue")