-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_tf.py
executable file
·192 lines (167 loc) · 6.86 KB
/
benchmark_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/env python3
import platform
import distro
PLATFORM = platform.system().lower()
GOOGLE = 'edge_tpu'
INTEL = 'ncs2'
NVIDIA = 'jetson_nano'
PI = 'raspberry_pi'
MAC = 'darwin'
IS_LINUX = (PLATFORM == 'linux')
if IS_LINUX:
PLATFORM = distro.id()
if PLATFORM == 'debian':
try:
with open('/sys/firmware/devicetree/base/model') as f:
for line in f:
line = line.strip()
if line.startswith('Raspberry'):
PLATFORM = PI
print("Running on a Raspberry Pi.")
break
except:
print("Unknown platform based on Debian.")
pass
elif PLATFORM == 'mendel':
PLATFORM = GOOGLE
print("Running on a Coral Dev Board.")
try:
from edgetpu.detection.engine import DetectionEngine
print("DetectionEngine present.")
except ImportError:
try:
from openvino.inference_engine import IENetwork, IEPlugin
print("OpenVINO present.")
print("Assuming Movidius hardware.")
PLATFORM = INTEL
except ImportError:
try:
import tensorflow as tf
if (tf.test.is_built_with_cuda()):
import tensorflow.contrib.tensorrt
print("TensorFlow with GPU support present.")
print("Assuming Jetson Nano.")
PLATFORM = NVIDIA
else:
print("No GPU support in TensorFlow.")
except ImportError:
print("No TensorFlow support found.")
LEGAL_PLATFORMS = NVIDIA, PI, MAC
assert PLATFORM in LEGAL_PLATFORMS, "Don't understand platform %s." % PLATFORM
import sys
import os
import logging as log
import argparse
import subprocess
from timeit import default_timer as timer
import cv2
from PIL import Image
from PIL import ImageFont, ImageDraw
# Function to draw a rectangle with width > 1
def draw_rectangle(draw, coordinates, color, width=1):
for i in range(width):
rect_start = (coordinates[0] - i, coordinates[1] - i)
rect_end = (coordinates[2] + i, coordinates[3] + i)
draw.rectangle((rect_start, rect_end), outline = color, fill = color)
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def inference_tf(runs, image, model, output, label=None):
if label:
labels = ReadLabelFile(label)
else:
labels = None
tf_config = tf.compat.v1.ConfigProto()
tf_config.gpu_options.allow_growth = True
with tf.compat.v1.gfile.FastGFile(model, 'rb') as f:
graph_def = tf.compat.v1.GraphDef()
graph_def.ParseFromString(f.read())
with tf.compat.v1.Session(config=tf_config) as sess:
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
img = Image.open(image)
draw = ImageDraw.Draw(img, 'RGBA')
helvetica=ImageFont.truetype("./Helvetica.ttf", size=72)
picture = cv2.imread(image)
initial_h, initial_w, channels = picture.shape
frame = cv2.resize(picture, (300, 300))
frame = frame[:, :, [2, 1, 0]] # BGR2RGB
frame = frame.reshape(1, frame.shape[0], frame.shape[1], 3)
# Start synchronous inference and get inference result
# Run inference.
print("Running inferencing for ", runs, " times.")
if runs == 1:
start = timer()
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': frame})
end = timer()
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' )
else:
start = timer()
print('Initial run, discarding.')
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': frame})
end = timer()
print('First run time is ', (end - start)*1000, 'ms')
start = timer()
for i in range(runs):
out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'),
sess.graph.get_tensor_by_name('detection_scores:0'),
sess.graph.get_tensor_by_name('detection_boxes:0'),
sess.graph.get_tensor_by_name('detection_classes:0')],
feed_dict={'image_tensor:0': frame})
end = timer()
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' )
# Visualize detected bounding boxes.
num_detections = int(out[0][0])
for i in range(num_detections):
classId = int(out[3][0][i])
score = float(out[1][0][i])
bbox = [float(v) for v in out[2][0][i]]
if score > 0.5:
xmin = bbox[1] * initial_w
ymin = bbox[0] * initial_h
xmax = bbox[3] * initial_w
ymax = bbox[2] * initial_h
if labels:
print(labels[classId], 'score = ', score)
else:
print ('score = ', score)
box = [xmin, ymin, xmax, ymax]
print( 'box = ', box )
draw_rectangle(draw, box, (0,128,128,20), width=5)
if labels:
draw.text((box[0] + 20, box[1] + 20), labels[classId], fill=(255,255,255,20), font=helvetica)
img.save(output)
print ('Saved to ', output)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='Path of the detection model.', required=True)
parser.add_argument('--label', help='Path of the labels file.')
parser.add_argument('--input', help='File path of the input image.', required=True)
parser.add_argument('--output', help='File path of the output image.')
parser.add_argument('--runs', help='Number of times to run the inference', type=int, default=1)
args = parser.parse_args()
if ( args.output):
output_file = args.output
else:
output_file = 'out.jpg'
if ( args.label ):
label_file = args.label
else:
label_file = None
result = inference_tf( args.runs, args.input, args.model, output_file, label_file)
if __name__ == '__main__':
main()