-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark_tf_lite.py
executable file
·145 lines (120 loc) · 4.58 KB
/
benchmark_tf_lite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/env python3
import tflite_runtime.interpreter as tflite
import sys
import os
import logging as log
import argparse
import subprocess
from timeit import default_timer as timer
import cv2
import numpy as np
from PIL import Image
from PIL import ImageFont, ImageDraw
# Function to draw a rectangle with width > 1
def draw_rectangle(draw, coordinates, color, width=1):
for i in range(width):
rect_start = (coordinates[0] - i, coordinates[1] - i)
rect_end = (coordinates[2] + i, coordinates[3] + i)
draw.rectangle((rect_start, rect_end), outline = color, fill = color)
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
def inference_tf(runs, image, model, output, label=None):
if label:
labels = ReadLabelFile(label)
else:
labels = None
# Load TFLite model and allocate tensors.
interpreter = tflite.Interpreter(model_path=model, num_threads=4)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
floating_model = False
if input_details[0]['dtype'] == np.float32:
floating_model = True
img = Image.open(image)
draw = ImageDraw.Draw(img, 'RGBA')
helvetica=ImageFont.truetype("./Helvetica.ttf", size=72)
picture = cv2.imread(image)
initial_h, initial_w, channels = picture.shape
frame = cv2.resize(picture, (width, height))
# add N dim
input_data = np.expand_dims(frame, axis=0)
if floating_model:
input_data = (np.float32(input_data) - 127.5) / 127.5
interpreter.set_tensor(input_details[0]['index'], input_data)
# Start synchronous inference and get inference result
# Run inference.
print("Running inferencing for ", runs, " times.")
if runs == 1:
start = timer()
interpreter.invoke()
end = timer()
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' )
else:
start = timer()
print('Initial run, discarding.')
interpreter.invoke()
end = timer()
print('First run time is ', (end - start)*1000, 'ms')
start = timer()
for i in range(runs):
interpreter.invoke()
end = timer()
print('Elapsed time is ', ((end - start)/runs)*1000, 'ms' )
detected_boxes = interpreter.get_tensor(output_details[0]['index'])
detected_classes = interpreter.get_tensor(output_details[1]['index'])
detected_scores = interpreter.get_tensor(output_details[2]['index'])
num_boxes = interpreter.get_tensor(output_details[3]['index'])
#print("num_boxes:", num_boxes[0])
#print("detected boxes:", detected_boxes)
#print("detected classes:", detected_classes)
#print("detected scores:", detected_scores)
for i in range(int(num_boxes)):
top, left, bottom, right = detected_boxes[0][i]
classId = int(detected_classes[0][i])
score = detected_scores[0][i]
if score > 0.5:
xmin = left * initial_w
ymin = bottom * initial_h
xmax = right * initial_w
ymax = top * initial_h
if labels:
print(labels[classId], 'score = ', score)
else:
print ('score = ', score)
box = [xmin, ymin, xmax, ymax]
#print( 'box = ', box )
draw_rectangle(draw, box, (0,128,128,20), width=5)
if labels:
draw.text((box[0] + 20, box[1] + 20), labels[classId], fill=(255,255,255,20), font=helvetica)
img.save(output)
print ('Saved to ', output)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model', help='Path of the detection model.', required=True)
parser.add_argument('--label', help='Path of the labels file.')
parser.add_argument('--input', help='File path of the input image.', required=True)
parser.add_argument('--output', help='File path of the output image.')
parser.add_argument('--runs', help='Number of times to run the inference', type=int, default=1)
args = parser.parse_args()
if ( args.output):
output_file = args.output
else:
output_file = 'out.jpg'
if ( args.label ):
label_file = args.label
else:
label_file = None
result = inference_tf( args.runs, args.input, args.model, output_file, label_file)
if __name__ == '__main__':
main()