-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathencode_faces.py
65 lines (57 loc) · 2.25 KB
/
encode_faces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# USAGE
# python encode_faces.py --dataset dataset --encodings encodings.pickle
# import the necessary packages
from imutils import paths
import face_recognition
#import argparse
#import pickle
import hickle as hkl
import cv2
import os
# construct the argument parser and parse the arguments
#ap = argparse.ArgumentParser()
#ap.add_argument("-i", "--dataset", required=True,
# help="path to input directory of faces + images")
#ap.add_argument("-e", "--encodings", required=True,
# help="path to serialized db of facial encodings")
#ap.add_argument("-d", "--detection-method", type=str, default="cnn",
# help="face detection model to use: either `hog` or `cnn`")
#args = vars(ap.parse_args())
# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
#imagePaths = list(paths.list_images(args["dataset"]))
imagePaths = list(paths.list_images('./dataset/'))
# initialize the list of known encodings and known names
knownEncodings = []
knownNames = []
# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
# extract the person name from the image path
print("[INFO] processing image {}/{}".format(i + 1,len(imagePaths)))
name = imagePath.split('/')[-1].split('\\')[0]
# load the input image and convert it from RGB (OpenCV ordering)
# to dlib ordering (RGB)
image = cv2.imread(imagePath)
image=cv2.resize(image,(355,355))
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
boxes = face_recognition.face_locations(rgb,model="cnn")
# detect the (x, y)-coordinates of the bounding boxes
# corresponding to each face in the input image
# #boxes = face_recognition.face_locations(rgb,
# model=args["detection_method"])
# compute the facial embedding for the face
encodings = face_recognition.face_encodings(rgb, boxes)
# loop over the encodings
for encoding in encodings:
# add each encoding + name to our set of known names and
# encodings
knownEncodings.append(encoding)
knownNames.append(name)
# dump the facial encodings + names to disk
print("[INFO] serializing encodings...")
data = {"encodings": knownEncodings, "names": knownNames}
print("[INFO] writing encodings...")
#f = open(args["encodings"], "wb")
#f = open()
hkl.dump(data,'encodings_new.h5', "w")
print("[INFO] successful")