-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcolor_labeler.py
48 lines (39 loc) · 1.69 KB
/
color_labeler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from scipy.spatial import distance as dist
from collections import OrderedDict
import numpy as np
import cv2
class ColorLabeler:
def __init__(self):
colors = OrderedDict({
"red": (255, 0, 0),
"green": (0, 255, 0),
"blue": (0, 0, 255),
})
# Allocate memory for the L*A*B image, then initialize the color names list
self.lab = np.zeros((len(colors), 1, 3), dtype="uint8")
self.colorNames = []
# loop over the colors dictionary
for (i, (name, rgb)) in enumerate(colors.items()):
self.lab[i] = rgb
self.colorNames.append(name)
# Convert L*A*B array from RGB color space to L*A*B
self.lab = cv2.cvtColor(self.lab, cv2.COLOR_RGB2LAB)
def label(self, frame, c):
# Construct a mask for the contour, then compute the
# Average LAB value for the masked region
mask = np.zeros(frame.shape[:2], dtype="uint8")
cv2.drawContours(mask, [c], -1, 255, -1)
mask = cv2.erode(mask, None, iterations=2)
mean = cv2.mean(frame, mask=mask)[:3]
# Initialize the minimum distance found thus far
minDist = (np.inf, None)
# loop over the known LAB color values
for (i, row) in enumerate(self.lab):
# compute the distance between the current LAB color value and the mean of the image
d = dist.euclidean(row[0], mean)
# If the distance is smaller than the current distance,
# then update the bookkeeping value
if d < minDist[0]:
minDist = (d, i)
# Return the name of the color with the smallest distance
return self.colorNames[minDist[1]]