forked from BachiLi/redner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_two_triangles.py
125 lines (113 loc) · 4.57 KB
/
test_two_triangles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import pyredner
import numpy as np
import torch
# Optimize six vertices of a two triangles
# Use GPU if available
pyredner.set_use_gpu(torch.cuda.is_available())
# Set up the scene using Pytorch tensor
position = torch.tensor([0.0, 0.0, -5.0])
look_at = torch.tensor([0.0, 0.0, 0.0])
up = torch.tensor([0.0, 1.0, 0.0])
fov = torch.tensor([45.0])
clip_near = 1e-2
resolution = (256, 256)
cam = pyredner.Camera(position = position,
look_at = look_at,
up = up,
fov = fov,
clip_near = clip_near,
resolution = resolution)
mat_green = pyredner.Material(\
diffuse_reflectance = torch.tensor([0.35, 0.75, 0.35],
device = pyredner.get_device()))
mat_red = pyredner.Material(\
diffuse_reflectance = torch.tensor([0.75, 0.35, 0.35],
device = pyredner.get_device()))
mat_black = pyredner.Material(\
diffuse_reflectance = torch.tensor([0.0, 0.0, 0.0],
device = pyredner.get_device()))
materials = [mat_green,mat_red,mat_black]
tri0_vertices = torch.tensor(\
[[-1.7,1.0,0.0], [1.0,1.0,0.0], [-0.5,-1.0,0.0]],
device = pyredner.get_device())
tri1_vertices = torch.tensor(\
[[-1.0,1.5,1.0], [0.2,1.5,1.0], [0.2,-1.5,1.0]],
device = pyredner.get_device())
tri0_indices = torch.tensor([[0, 1, 2]], dtype = torch.int32, device = pyredner.get_device())
tri1_indices = torch.tensor([[0, 1, 2]], dtype = torch.int32, device = pyredner.get_device())
shape_tri0 = pyredner.Shape(tri0_vertices, tri0_indices, None, None, 0)
shape_tri1 = pyredner.Shape(tri1_vertices, tri1_indices, None, None, 1)
light_vertices = torch.tensor(\
[[-1.0,-1.0,-7.0],[1.0,-1.0,-7.0],[-1.0,1.0,-7.0],[1.0,1.0,-7.0]],
device = pyredner.get_device())
light_indices = torch.tensor([[0,1,2],[1,3,2]], dtype = torch.int32, device = pyredner.get_device())
shape_light = pyredner.Shape(light_vertices, light_indices, None, None, 2)
shapes = [shape_tri0, shape_tri1, shape_light]
light_intensity = torch.tensor([20.0,20.0,20.0])
# The first argument is the shape id of the light
light = pyredner.AreaLight(2, light_intensity)
area_lights = [light]
scene = pyredner.Scene(cam, shapes, materials, area_lights)
args = pyredner.RenderFunction.serialize_scene(\
scene = scene,
num_samples = 256,
max_bounces = 1)
# Alias of the render function
render = pyredner.RenderFunction.apply
# Render our target
img = render(0, *args)
pyredner.imwrite(img.cpu(), 'results/test_two_triangles/target.exr')
pyredner.imwrite(img.cpu(), 'results/test_two_triangles/target.png')
target = pyredner.imread('results/test_two_triangles/target.exr')
if pyredner.get_use_gpu():
target = target.cuda()
# Perturb the scene, this is our initial guess
shape_tri0.vertices = torch.tensor(\
[[-1.3,1.5,0.1], [1.5,0.7,-0.2], [-0.8,-1.1,0.2]],
device = pyredner.get_device(),
requires_grad=True)
shape_tri1.vertices = torch.tensor(\
[[-0.5,1.2,1.2], [0.3,1.7,1.0], [0.5,-1.8,1.3]],
device = pyredner.get_device(),
requires_grad=True)
args = pyredner.RenderFunction.serialize_scene(\
scene = scene,
num_samples = 256,
max_bounces = 1)
# Render the initial guess
img = render(1, *args)
pyredner.imwrite(img.cpu(), 'results/test_two_triangles/init.png')
diff = torch.abs(target - img)
pyredner.imwrite(diff.cpu(), 'results/test_two_triangles/init_diff.png')
# Optimize for triangle vertices
optimizer = torch.optim.Adam([shape_tri0.vertices, shape_tri1.vertices], lr=5e-2)
for t in range(200):
print('iteration:', t)
optimizer.zero_grad()
# Forward pass: render the image
args = pyredner.RenderFunction.serialize_scene(\
scene = scene,
num_samples = 4,
max_bounces = 1)
img = render(t+1, *args)
pyredner.imwrite(img.cpu(), 'results/test_two_triangles/iter_{}.png'.format(t))
loss = (img - target).pow(2).sum()
print('loss:', loss.item())
loss.backward()
print('tri0.grad:', shape_tri0.vertices.grad)
print('tri1.grad:', shape_tri1.vertices.grad)
optimizer.step()
print('tri0:', shape_tri0.vertices)
print('tri1:', shape_tri1.vertices)
args = pyredner.RenderFunction.serialize_scene(\
scene = scene,
num_samples = 256,
max_bounces = 1)
img = render(202, *args)
pyredner.imwrite(img.cpu(), 'results/test_two_triangles/final.exr')
pyredner.imwrite(img.cpu(), 'results/test_two_triangles/final.png')
pyredner.imwrite(torch.abs(target - img).cpu(), 'results/test_two_triangles/final_diff.png')
from subprocess import call
call(["ffmpeg", "-framerate", "24", "-i",
"results/test_two_triangles/iter_%d.png", "-vb", "20M",
"results/test_two_triangles/out.mp4"])