-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmulti-classification_torchModel_example.py
79 lines (63 loc) · 3.35 KB
/
multi-classification_torchModel_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
"""
Author : Abdullah Al Masud\n
email : [email protected]\n
LICENSE : MIT License
"""
# torchModel() multi-class classification example
import pandas as pd
from sklearn.datasets import fetch_covtype, load_iris, load_digits
import torch
import os
import sys
project_dir = os.getcwd()
sys.path.append(project_dir)
from msdlib import mlutils
from msdlib import msd
# Loading the data and separating data and label
source_data = load_digits()
feature_names = source_data['feature_names'].copy()
data = pd.DataFrame(source_data['data'], columns=feature_names)
label2index = {name: i for i, name in enumerate(source_data['target_names'])}
label = pd.Series(source_data['target']).replace(label2index)
# label = pd.Series(source_data['target'], name='target_names')
# # label is 1 based index. So, converting it to 0 based index
# label = label - 1
# print(source_data['DESCR'])
print('data :\n', data.head())
print('labels :\n', label)
print('classes :', label.unique())
# Standardizing numerical data
data = msd.standardize(data)
# Splitting data set into train, validation and test
splitter = msd.SplitDataset(data, label, test_ratio=.1)
outdata = splitter.random_split(val_ratio=.1)
print("outdata.keys() :", outdata.keys())
print("outdata['train'].keys() :", outdata['train'].keys())
print("outdata['validation'].keys() :", outdata['validation'].keys())
print("outdata['test'].keys() :", outdata['test'].keys())
print("train > data, labels and index shapes :",
outdata['train']['data'].shape, outdata['train']['label'].shape, outdata['train']['index'].shape)
print("validation > data, labels and index shapes :",
outdata['validation']['data'].shape, outdata['validation']['label'].shape, outdata['validation']['index'].shape)
print("test > data, labels and index shapes :",
outdata['test']['data'].shape, outdata['test']['label'].shape, outdata['test']['index'].shape)
# defining layers inside a list
layers = mlutils.define_layers(data.shape[1], label.unique().shape[0], [100, 100, 100, 100, 100, 100], dropout_rate=.2,
actual_units=True, activation=torch.nn.ReLU(), model_type='regressor')
tmodel = mlutils.torchModel(layers=layers, model_type='multi-classifier', tensorboard_path='runs',
savepath='examples/multiclass-classification_torchModel', batch_size=64, epoch=150, learning_rate=.0001, lr_reduce=.995)
print(tmodel.model)
# Training Pytorch model
tmodel.fit(outdata['train']['data'], outdata['train']['label'],
val_data=outdata['validation']['data'], val_label=outdata['validation']['label'])
# Evaluating the model's performance
result, all_results = tmodel.evaluate(data_sets=[outdata['train']['data'], outdata['test']['data']],
label_sets=[
outdata['train']['label'], outdata['test']['label']],
set_names=['Train', 'Test'], savepath='examples/multiclass-classification_torchModel')
print('classification score :\n', result)
# scores for classification
print('test data score :\n', all_results['Test'][0])
# confusion matrix for classification
print('test data confusion matrix :\n', all_results['Test'][1])
assert all_results['Test'][0]['average'].loc['f1_score'] >= .92, 'test set f1-score is less than .92'