-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
521 lines (434 loc) · 16.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
from cmdstanpy import CmdStanModel
import bridgestan as bs
import cmdstanpy as csp
import pandas as pd
import numpy as np
import arviz as az
import scipy.stats as stats
import matplotlib.pyplot as plt
import os
import gc
import json
import logging
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
warnings.filterwarnings("ignore", module="plotnine/..*")
csp.utils.get_logger().setLevel(logging.ERROR)
__all__ = [
"StanModel",
"Stan",
"BridgeStan",
"StanQuap",
"link",
"center",
"standardize",
"convert_to_categorical",
"precis",
"precis_az",
"cov2cor",
"cov2corr",
"chainmode",
"bw_nrd0",
"crosstab",
"clear_memory",
]
# -------------- Load & Compile Stan Model -------------------
def StanModel(stan_file: str, stan_code: str) -> CmdStanModel:
"""Load or compile a Stan model"""
stan_src = f"{stan_file}.stan"
if not os.path.isfile(stan_file):
open(stan_src, "w").write(stan_code) # Write Stan code if needed
return CmdStanModel(
stan_file=stan_src,
cpp_options={"STAN_THREADS": "true", "parallel_chains": 4},
)
return CmdStanModel(stan_file=stan_src, exe_file=stan_file)
class Stan(CmdStanModel):
def __init__(self, stan_file: str, stan_code: str, force_compile=False):
"""Load or compile a Stan model"""
stan_src = f"{stan_file}.stan"
exe_file = stan_file
# Check for the compiled executable
if not os.path.isfile(exe_file) or force_compile:
with open(stan_src, "w") as f:
f.write(stan_code)
super().__init__(
stan_file=stan_src,
force_compile=True,
cpp_options={"STAN_THREADS": "true", "parallel_chains": 4},
)
else:
super().__init__(stan_file=stan_src, exe_file=exe_file)
class BridgeStan(bs.StanModel):
def __init__(self, stan_file: str, data: dict, force_compile=False):
"""Load or compile a BridgeStan shared object"""
stan_so = f"{stan_file}_model.so"
make_args = ["BRIDGESTAN_AD_HESSIAN=true", "STAN_THREADS=true"]
data = json.dumps(data)
if (
not os.path.isfile(stan_so) or force_compile
): # If the shared object does not exist, compile it
super().__init__(f"{stan_file}.stan", data, make_args=make_args)
else:
super().__init__(stan_so, data, make_args=make_args, warn=False)
class StanQuap(object):
"""
Description:
Find mode of posterior distribution for arbitrary fixed effect models and
then produce an approximation of the full posterior using the quadratic
curvature at the mode.
This command provides a convenient interface for finding quadratic approximations
of posterior distributions for models defined in Stan. This procedure is equivalent
to penalized maximum likelihood estimation and the use of a Hessian for profiling,
and therefore can be used to define many common regularization procedures. The point
estimates returned correspond to a maximum a posterior, or MAP, estimate. However the
intention is that users will use `extract_samples` and `laplace_sample` and other methods to work
with the full posterior.
"""
def __init__(
self,
stan_file: str,
stan_code: str,
data: dict,
algorithm="Newton",
jacobian: bool = False,
force_compile: bool = False,
generated_var: list = [],
**kwargs,
):
self.train_data = data
self.stan_model = Stan(stan_file, stan_code, force_compile)
self.bs_model = BridgeStan(stan_file, self.train_data, force_compile)
self.opt_model = self.stan_model.optimize(
data=self.train_data, algorithm=algorithm, jacobian=jacobian, **kwargs
)
self.generated_var = generated_var
self.params = self.opt_model.stan_variables()
self.opt_params = {
param: self.params[param]
for param in self.params.keys()
if param not in self.generated_var
}
self.params_unc = self.bs_model.param_unconstrain(
np.array(self._flatten_dict_values(self.opt_params))
)
self.jacobian = jacobian
self.algorithm = algorithm
def log_density_hessian(self):
log_dens, gradient, hessian = self.bs_model.log_density_hessian(
self.params_unc, jacobian=self.jacobian
)
return log_dens, gradient, hessian
def vcov_matrix(self, param_types=None, eps=1e-6):
_, _, hessian_unc = self.log_density_hessian()
vcov_unc = np.linalg.inv(-hessian_unc)
cov_matrix = self.transform_vcov(vcov_unc, param_types, eps)
return cov_matrix
def laplace_sample(self, data: dict = None, draws: int = 100_000, opt_args=None):
if data is not None:
return self.stan_model.laplace_sample(
data=data,
draws=draws,
jacobian=self.jacobian,
opt_args=opt_args,
)
return self.stan_model.laplace_sample(
data=self.train_data,
mode=self.opt_model,
draws=draws,
jacobian=self.jacobian,
)
def extract_samples(
self,
n: int = 100_000,
dict_out: bool = True,
drop: list = None,
select: list = None,
):
if drop is None:
drop = self.generated_var # Default drop list
laplace_obj = self.laplace_sample(draws=n)
if dict_out:
stan_var_dict = laplace_obj.stan_variables()
# If select is provided, return only those variables
if select is not None:
return {
param: stan_var_dict[param]
for param in select
if param in stan_var_dict
}
# Otherwise, drop the specified variables
return {
param: stan_var_dict[param]
for param in stan_var_dict.keys()
if param not in drop
}
return laplace_obj.draws()
def link(
self,
lm_func,
predictor,
n=1000,
post=None,
drop: list = None,
select: list = None,
):
# Extract Posterior Samples
if post is None:
post = self.extract_samples(n=n, dict_out=True, drop=drop, select=select)
return lm_func(post, predictor)
def sim(
self, data: dict = None, n=1000, dict_out: bool = True, select: list = None
):
"""
Simulate posterior observations - Posterior Predictive Sampling
https://mc-stan.org/docs/stan-users-guide/posterior-prediction.html
https://mc-stan.org/docs/stan-users-guide/posterior-predictive-checks.html
"""
if select is None:
select = self.generated_var
if data is None:
laplace_obj = self.laplace_sample(draws=n)
else:
laplace_obj = self.laplace_sample(
data=data,
draws=n,
opt_args={
"algorithm": self.algorithm,
"jacobian": self.jacobian,
},
)
if dict_out:
stan_var_dict = laplace_obj.stan_variables()
return {
param: stan_var_dict[param]
for param in stan_var_dict
if param in select
}
return laplace_obj.draws()
def compute_jacobian_analytical(self, param_types):
"""
Analytical computation of the Jacobian matrix for transforming
variance-covariance matrix from unconstrained to constrained space.
"""
dim = len(self.params_unc)
J = np.zeros((dim, dim)) # Initialize Jacobian matrix
for i in range(dim):
if param_types[i] == "uncons": # Unconstrained (Identity transformation)
J[i, i] = 1
elif param_types[i] == "pos_real": # Positive real (Exp transformation)
J[i, i] = np.exp(self.params_unc[i])
elif param_types[i] == "prob": # Probability (Logit transformation)
x = 1 / (1 + np.exp(-self.params_unc[i])) # Sigmoid function
J[i, i] = x * (1 - x)
else:
raise ValueError(f"Unknown parameter type: {param_types[i]}")
return J
def compute_jacobian_numerical(self, eps=1e-6):
"""
Analytical computation of the Jacobian matrix for transforming
variance-covariance matrix from unconstrained to constrained space.
"""
dim = len(self.params_unc)
J = np.zeros((dim, dim)) # Full Jacobian matrix
# Compute Jacobian numerically for each parameter
for i in range(dim):
perturbed = self.params_unc.copy()
# Perturb parameter i
perturbed[i] += eps
constrained_plus = np.array(self.bs_model.param_constrain(perturbed))
perturbed[i] -= 2 * eps
constrained_minus = np.array(self.bs_model.param_constrain(perturbed))
# Compute numerical derivative
J[:, i] = (constrained_plus - constrained_minus) / (2 * eps)
return J
def transform_vcov(self, vcov_unc, param_types=None, eps=1e-6):
"""
Transform the variance-covariance matrix from the unconstrained space to the constrained space.
Args:
- vcov_unc (np.array): variance-covariance matrix in the unconstrained space.
- param_types (list) [Required for analytical solution]: List of strings specifying the type of each parameter.
Options: 'uncons' (unconstrained), 'pos_real' (positive real), 'prob' (0 to 1).
- eps (float) [Required for numerical solution]: Small perturbation for numerical differentiation.
Returns:
- vcov_con (np.array): variance-covariance matrix in the constrained space.
"""
if param_types is None:
J = self.compute_jacobian_numerical(eps)
else:
J = self.compute_jacobian_analytical(param_types)
vcov_con = J.T @ vcov_unc @ J
return vcov_con
def precis(self, param_types=None, prob=0.89, eps=1e-6):
vcov_mat = self.vcov_matrix(param_types, eps)
pos_mu = np.array(self._flatten_dict_values(self.opt_params))
pos_sigma = np.sqrt(np.diag(vcov_mat))
plo = (1 - prob) / 2
phi = 1 - plo
lo = pos_mu + pos_sigma * stats.norm.ppf(plo)
hi = pos_mu + pos_sigma * stats.norm.ppf(phi)
res = pd.DataFrame(
{
"Parameter": self.bs_model.param_names(),
"Mean": pos_mu,
"StDev": pos_sigma,
f"{plo:.1%}": lo,
f"{phi:.1%}": hi,
}
)
return res.set_index("Parameter")
def _flatten_dict_values(self, d):
arrays = [np.ravel(np.array(value)) for value in d.values()]
return np.concatenate(arrays)
def link(fit, lm_func, predictor, n=1000, post=None):
# Extract Posterior Samples
if post is None:
post = fit.extract_samples(n=n, dict_out=True)
return lm_func(post, predictor)
# ----------------------- Stat Functions -----------------------
def center(vals: np.ndarray) -> np.ndarray:
return vals - np.nanmean(vals)
def standardize(vals: np.ndarray, ddof=1) -> np.ndarray:
centered_vals = center(vals)
return centered_vals / np.nanstd(vals, ddof=ddof)
def convert_to_categorical(vals):
return vals.astype("category").cat.codes.values
def logit(p: float) -> float:
return np.log(p / (1 - p))
def invlogit(x: float) -> float:
return 1 / (1 + np.exp(-x))
def precis(samples, prob=0.89, index_name="Parameter", np_axis=0):
if isinstance(samples, dict) or isinstance(samples, pd.Series):
samples = pd.DataFrame(samples)
plo = (1 - prob) / 2
phi = 1 - plo
if isinstance(samples, np.ndarray):
return (
samples.mean(axis=np_axis),
np.quantile(samples, q=plo, axis=np_axis),
np.quantile(samples, q=phi, axis=np_axis),
)
res = pd.DataFrame(
{
f"{index_name}": samples.columns.to_numpy(),
"Mean": samples.mean().to_numpy(),
"StDev": samples.std().to_numpy(),
f"{plo:.1%}": samples.quantile(q=plo).to_numpy(),
f"{phi:.1%}": samples.quantile(q=phi).to_numpy(),
}
)
return res.set_index(f"{index_name}")
def precis_az(samples, var_names=None):
return az.summary(samples, kind="stats", hdi_prob=0.89, var_names=var_names).round(
2
)
def cov2cor(c: np.ndarray) -> np.ndarray:
"""
Return a correlation matrix given a covariance matrix.
: c = covariance matrix
"""
D = np.zeros(c.shape)
np.fill_diagonal(D, np.sqrt(np.diag(c)))
invD = np.linalg.inv(D)
return invD @ c @ invD
# finds mode of a continuous density
def chainmode(chain, bw_fct=0.01, **kwargs):
x, y = az.kde(chain, bw_fct=bw_fct, **kwargs)
return x[np.argmax(y)]
def cov2corr(A):
"""
covariance matrix to correlation matrix.
https://www.r-bloggers.com/2019/08/arguments-of-statsdensity/
https://python.arviz.org/en/latest/api/generated/arviz.kde.html
https://python.arviz.org/en/stable/_modules/arviz/stats/density_utils.html#kde
"""
d = np.sqrt(A.diagonal()) # Compute standard deviations
A = ((A.T / d).T) / d # # Normalize each element by sqrt(C_ii * C_jj)
return A
# R's bandwidth: Bandwidth Selectors for Kernel Density Estimation
# https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/bandwidth
# Other Bandwidth selections include: bw.nrd, bw.ucv, bw.bcv, and bw.SJ
def bw_nrd0(x):
"""
Implementation of R's rule-of-thumb for choosing the bandwidth of a Gaussian
kernel density estimator. It defaults to 0.9 times the minimum of the standard
deviation and the interquartile range divided by 1.34 times the sample size to
the negative one-fifth power (= Silverman's ‘rule of thumb’, Silverman (1986,
page 48, eqn (3.31))) unless the quartiles coincide when a positive result
will be guaranteed.
"""
if len(x) < 2:
raise (Exception("need at least 2 data points"))
hi = np.std(x, ddof=1)
q75, q25 = np.percentile(x, [75, 25])
iqr = q75 - q25
lo = min(hi, iqr / 1.34)
lo = lo or hi or abs(x[0]) or 1
# if not lo:
# if hi:
# lo = hi
# elif abs(x[0]):
# lo = abs(x[0])
# else:
# lo = 1
return 0.9 * lo * len(x) ** -0.2
# bw.nrd is the more common variation given by Scott (1992), using factor 1.06.
# bw.ucv and bw.bcv implement unbiased and biased cross-validation respectively.
# bw.SJ implements the methods of Sheather & Jones (1991) to select the bandwidth
# using pilot estimation of derivatives. The algorithm for method "ste" solves an equation
# (via uniroot) and because of that, enlarges the interval c(lower, upper) when the boundaries
# were not user-specified and do not bracket the root.
# ----------------------- Crosstable -----------------------
def crosstab(x: np.array, y: np.array, labels: list[str] = None):
"""Simple cross tabulation of two discrete vectors x and y"""
ct = pd.crosstab(x, y)
if labels:
ct.index = labels
ct.columns = labels
return ct
# ----------------------- Garbage Collect -----------------------
def clear_memory(exceptions=None, targeted_types=None):
"""Clears memory by deleting global variables except those in exceptions.
Args:
exceptions (list, optional): List of variable names to exclude from deletion.
targeted_types (list, optional): List of data types to delete.
"""
# Default exceptions
default_exceptions = ["exceptions", "active_variables"]
if exceptions:
default_exceptions.extend(exceptions) # Append user-provided exceptions
# Default targeted types
default_types = [
dict,
list,
int,
float,
str,
tuple,
CmdStanModel,
plt.Axes,
az.InferenceData,
pd.DataFrame,
pd.Series,
plt.Figure,
np.ndarray,
np.int64,
np.float32,
]
if targeted_types:
default_types.extend(targeted_types) # Append user-provided types
# Identify variables to delete
active_variables = [
var
for var, value in globals().items()
if not var.startswith("_") # Exclude private/internal variables
and var not in default_exceptions # Exclude user-specified exceptions
and isinstance(value, tuple(default_types)) # Check against expanded type list
]
# Delete identified variables
for var in active_variables:
del globals()[var]
# Cleanup references
del active_variables, default_exceptions, default_types
# Run garbage collection
gc.collect()