-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtask05.py
73 lines (52 loc) · 1.78 KB
/
task05.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# This python script pull raw data from cAdvisor using the REST API for each active container.
# It then stores the JSON files in a mongoDB database, with a collection for each container.
# usage: python task-05-pipeline.py <database>
# returns: prints the collection names within the database
# loading modules
import docker
import requests
import json
import pymongo
import argparse
import sys
from pymongo import MongoClient
from task03 import simulate_load
from util import get_args
if __name__ == '__main__':
# setting up client
client = docker.from_env()
# defining database
args = get_args()
# connecting to mongoDB
mclient = MongoClient(args.mongo_client, 3306)
# simulate load
if args.simulate_load == "True":
simulate_load(args)
name = args.database
db = mclient[name]
# open file for writing
if args.write_to_file == "True":
f = open(name+".collections.txt","w+")
# for each container in the web application
for item in client.containers.list():
# get id and name
cont_id = item.id
cont_name = item.name
if args.write_to_file == "True":
f.write(cont_name+"\n")
print(cont_name)
# cadvisor url
url = args.api_url + cont_id
print(url)
# pull raw data
res = requests.get(url).json()
parsed = res
# creating collection
records = db[cont_name]
# unique container search parameter
search = '/docker/' + cont_id
# storing each stats record in container's collection in the database
for p in parsed:
if p["name"] == search:
for record in p["stats"]:
records.insert(record)