-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcbits.go
165 lines (136 loc) · 3.4 KB
/
cbits.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
package snpe
// #include <stdio.h>
// #include <stdlib.h>
// #include "cbits/predictor.hpp"
import "C"
import (
"bufio"
"fmt"
"os"
"sort"
"unsafe"
"github.com/Unknwon/com"
"github.com/pkg/errors"
"github.com/rai-project/dlframework"
"github.com/rai-project/dlframework/framework/feature"
)
// Hardware Modes
const (
CPU_1_thread = 1
CPU_2_thread = 2
CPU_3_thread = 3
CPU_4_thread = 4
CPU_5_thread = 5
CPU_6_thread = 6
CPU_7_thread = 7
CPU_8_thread = 8
GPU = 9
NNAPI = 10
DSP = 11
)
// Predictor Structure definition
type PredictorData struct {
ctx C.PredictorContext
mode int
batch int
}
// Make access to mode and batch public
func (pd *PredictorData) Inc() {
pd.mode++
pd.batch++
}
// Create new Predictor Structure
func NewPredictorData() *PredictorData {
return &PredictorData{}
}
// Create new predictor
func New(model string, mode, batch int, verbose bool, profile bool) (*PredictorData, error) {
modelFile := model
if !com.IsFile(modelFile) {
return nil, errors.Errorf("file %s not found", modelFile)
}
return &PredictorData{
ctx: C.NewSnpe(
C.CString(modelFile),
C.int(batch),
C.int(mode),
C.bool(verbose),
C.bool(profile),
),
mode: mode,
batch: batch,
}, nil
}
// Initialize TFLite
func init() {
C.InitSnpe()
}
// Run inference
func Predict(p *PredictorData, data []byte, quantize bool) error {
if len(data) == 0 {
return fmt.Errorf("image data is empty")
}
ptr_quantize := (*C.int)(unsafe.Pointer(&data[0]))
ptr_float := (*C.float)(unsafe.Pointer(&data[0]))
if quantize == true {
C.PredictSnpe(p.ctx, ptr_quantize, ptr_float, true)
} else {
C.PredictSnpe(p.ctx, ptr_quantize, ptr_float, false)
}
return nil
}
// Return Top-5 predicted label
func ReadPredictionOutput(p *PredictorData, labelFile string) (string, error) {
batchSize := p.batch
if batchSize == 0 {
return "", errors.New("null batch")
}
predLen := int(C.GetPredLenSnpe(p.ctx))
if predLen == 0 {
return "", errors.New("null predLen")
}
length := batchSize * predLen
if p.ctx == nil {
return "", errors.New("empty predictor context")
}
cPredictions := C.GetPredictionsSnpe(p.ctx)
if cPredictions == nil {
return "", errors.New("empty predictions")
}
slice := (*[1 << 15]float32)(unsafe.Pointer(cPredictions))[:length:length]
var labels []string
f, err := os.Open(labelFile)
if err != nil {
panic(err)
}
scanner := bufio.NewScanner(f)
for scanner.Scan() {
line := scanner.Text()
labels = append(labels, line)
}
features := make([]dlframework.Features, batchSize)
featuresLen := len(slice) / batchSize
for ii := 0; ii < batchSize; ii++ {
rprobs := make([]*dlframework.Feature, featuresLen)
for jj := 0; jj < featuresLen; jj++ {
rprobs[jj] = feature.New(
feature.ClassificationIndex(int32(jj)),
feature.ClassificationLabel(labels[jj]),
feature.Probability(slice[ii*featuresLen+jj]),
)
}
sort.Sort(dlframework.Features(rprobs))
features[ii] = rprobs
}
top1 := features[0][0]
top2 := features[0][1]
top3 := features[0][2]
top4 := features[0][3]
top5 := features[0][4]
top_concatenated := top1.GetClassification().GetLabel() + "|" + top2.GetClassification().GetLabel() + "|" + top3.GetClassification().GetLabel() + "|" + top4.GetClassification().GetLabel() + "|" + top5.GetClassification().GetLabel()
return top_concatenated, nil
}
// Delete the predictor
func Close(p *PredictorData) {
C.DeleteSnpe(p.ctx)
}