-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDepthFeatureExtractor.cpp
executable file
·221 lines (169 loc) · 7.25 KB
/
DepthFeatureExtractor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//
// DepthFeatureExtractor.cpp
// Segmenthreetion
//
// Created by Albert Clapés on 24/05/13.
// Copyright (c) 2013 Albert Clapés. All rights reserved.
//
#include "DepthFeatureExtractor.h"
#include "DepthParametrization.hpp"
#include <opencv2/opencv.hpp>
#include <pcl/point_types.h>
#include <pcl/features/normal_3d.h>
#include <pcl/point_cloud.h>
#include <pcl/visualization/cloud_viewer.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <boost/thread.hpp>
#include <boost/timer.hpp>
#define __PI 3.14159265
DepthFeatureExtractor::DepthFeatureExtractor()
: FeatureExtractor()
{ }
DepthFeatureExtractor::DepthFeatureExtractor(DepthParametrization dParam)
: FeatureExtractor(), m_DepthParam(dParam)
{ }
void DepthFeatureExtractor::setParam(DepthParametrization depthParam)
{
m_DepthParam = depthParam;
}
void DepthFeatureExtractor::describe(ModalityGridData& data)
{
FeatureExtractor::describe(data);
}
void DepthFeatureExtractor::describe(GridMat grid, GridMat gmask, cv::Mat gvalidness, GridMat& gdescriptors)
{
gdescriptors.release();
gdescriptors.create(gdescriptors.crows(), gdescriptors.ccols());
for (int i = 0; i < gdescriptors.crows(); i++) for (int j = 0; j < gdescriptors.ccols(); j++)
{
cv::Mat dNormalsOrientsHist(1, (m_DepthParam.thetaBins + m_DepthParam.phiBins), CV_32F);
dNormalsOrientsHist.setTo(std::numeric_limits<float>::quiet_NaN());
if (gvalidness.at<unsigned char>(i,j))
{
cv::Mat & cell = grid.at(i,j);
cv::Mat & cellMask = gmask.at(i,j);
// Normals orientation descriptor
describeNormalsOrients(cell, cellMask, dNormalsOrientsHist);
}
gdescriptors.at(i,j) = dNormalsOrientsHist; // row in a matrix of descriptors
}
}
//void DepthFeatureExtractor::describe(ModalityGridData& data)
//{
// for (int k = 0; k < data.getGridsFrames().size(); k++)
// {
// if (k % 100 == 0) cout << 100.0 * k / data.getGridsFrames().size() << "%" << endl; // debug
//
// GridMat grid = data.getGridFrame(k);
// GridMat gmask = data.getGridMask(k);
// cv::Mat gvalidness = data.getValidnesses(k);
//
//
// }
//}
void DepthFeatureExtractor::describeNormalsOrients(const cv::Mat cell, const cv::Mat mask, cv::Mat & dNormalsOrientsHist)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr pCloud ( new pcl::PointCloud<pcl::PointXYZ>() );
pCloud->height = cell.rows;
pCloud->width = cell.cols;
pCloud->resize(pCloud->height * pCloud->width);
pCloud->is_dense = true;
float invfocal = 3.501e-3f; // Kinect inverse focal length. If depth map resolution of: 320 x 240
int n = 0;
for (unsigned int y = 0; y < pCloud->height; y++) for (unsigned int x = 0; x < pCloud->width; x++)
{
unsigned short uz = cell.at<unsigned short>(y,x);
unsigned short z = uz >> 3;
if ( z > 0 && z < 8191 && mask.at<unsigned char>(y,x) > 0 ) // not a depth error
{
float rwx, rwy, rwz;
rwx = (x - 320.0) * invfocal * z;
rwy = (y - 240.0) * invfocal * z;
rwz = z;
pcl::PointXYZ p(rwx/1000.f, rwy/1000.f, rwz/1000.f);
pCloud->at(x,y) = p;
// cout << pCloud->at(x,y).x << ", "
// << pCloud->at(x,y).y << ", "
// << pCloud->at(x,y).z << endl;
n++;
}
}
// cout << "bargain" << endl;
if (n == 0)
return;
// Create the filtering object
// pcl::PointCloud<pcl::PointXYZ>::Ptr pCloudFiltered ( new pcl::PointCloud<pcl::PointXYZ>() );
//
// pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
// sor.setInputCloud (pCloud);
// sor.setMeanK (50);
// sor.setStddevMulThresh (1.0);
// sor.filter (*pCloudFiltered);
//
// cout << pCloudFiltered->points.size() << endl;
// Code performing normal estimation and calculus of the grid descriptor
// if (pCloud->height > 70 && pCloud->width > 70)
// {
// pcl::visualization::PCLVisualizer viz("viz");
// viz.addPointCloud<pcl::PointXYZ>(pCloudFiltered, "sample cloud");
// viz.initCameraParameters();
// viz.addCoordinateSystem(5.0, 0, 0, 0);
//
// while (!viz.wasStopped ())
// {
// viz.spinOnce (100);
// boost::this_thread::sleep (boost::posix_time::microseconds (100000));
// }
// }
// Compute the normals using pcl
pcl::PointCloud<pcl::Normal>::Ptr pNormals (new pcl::PointCloud<pcl::Normal>);
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;
ne.setInputCloud(pCloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ> ());
ne.setSearchMethod (tree);
ne.setRadiusSearch (m_DepthParam.normalsRadius); // neighbors in a sphere of radius X meters
ne.compute (*pNormals);
// cout << pNormals->points.size() << endl;
// cout << pNormals->height << endl;
// cout << pNormals->width << endl;
// Put it in a histogram
cv::Mat thetas = cv::Mat::zeros(pNormals->height, pNormals->width, cv::DataType<float>::type);
cv::Mat phis = cv::Mat::zeros(pNormals->height, pNormals->width, cv::DataType<float>::type);
// cout << endl;
for (unsigned int y = 0; y < pNormals->height; y++) for (unsigned int x = 0; x < pNormals->width; x++)
{
// cout << pCloud->at(x,y).x << " " << pNormals->at(x,y).normal_x << ", " << pCloud->at(x,y).y << " " << pNormals->at(x,y).normal_y << ", " << pCloud->at(x,y).z << " " << pNormals->at(x,y).normal_z << endl;
float nx = pNormals->at(x,y).normal_x;
float ny = pNormals->at(x,y).normal_y;
float nz = pNormals->at(x,y).normal_z;
float r = sqrt(powf(nx,2) + powf(ny,2) + powf(nz,2));
// cout << "pcl" << endl;
thetas.at<float>(y,x) = acos(nz / r) * 180.0 / __PI;
phis.at<float>(y,x) = atan(ny / nx) * 180.0 / __PI;
// cout << "opencv" << endl;
}
// cout << "hist computation" << endl;
cv::Mat thetasHist = cv::Mat::zeros(1, m_DepthParam.thetaBins, cv::DataType<float>::type);
cv::Mat phisHist = cv::Mat::zeros(1, m_DepthParam.phiBins, cv::DataType<float>::type);
// Create an histogram for the cell region of blurred intensity values
int thetasHistSize[] = { (int) m_DepthParam.thetaBins };
int channels[] = { 0 }; // 1 channel, number 0
float tranges[] = { 0, 360 };
const float* ranges[] = { tranges };
cv::Mat tmpThetasHist;
cv::calcHist(&thetas, 1, channels, mask, tmpThetasHist, 1, thetasHistSize, ranges, true, false);
cv::transpose(tmpThetasHist, tmpThetasHist);
hypercubeNorm(tmpThetasHist, thetasHist);
tmpThetasHist.release();
int phisHistSize[] = { (int) m_DepthParam.phiBins };
cv::Mat tmpPhiHist;
cv::calcHist(&phis, 1, channels, mask, tmpPhiHist, 1, phisHistSize, ranges, true, false);
cv::transpose(tmpPhiHist, tmpPhiHist);
hypercubeNorm(tmpPhiHist, phisHist);
tmpPhiHist.release();
// Join both descriptors in a row
hconcat(thetasHist, phisHist, dNormalsOrientsHist);
thetasHist.release();
phisHist.release();
return;
}