-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterpolators.py
97 lines (65 loc) · 2.33 KB
/
interpolators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from scipy import interpolate
import numpy as np
#Dataset 3 Benchmark
#NearestPowerCurveInterpolator -> 0:01:18.958000
#IndexPowerCurveInterpolator -> 0:00:31.208000
#DictPowerCurveInterpolator -> 0:00:28.299000
#LinearPowerCurveInterpolator -> 0:01:42.443000
class LinearPowerCurveInterpolator:
def __init__(self, x, y):
self.interpolator = interpolate.interp1d(x, y, kind='linear',fill_value=0.0,bounds_error=False)
def __call__(self, x):
return self.interpolator(x)
class DictPowerCurveInterpolator:
def __init__(self, x, y):
xStart = self.round(min(x))
xEnd = self.round(max(x))
xStep = 0.01
steps = int((xEnd - xStart) / xStep) + 1
self.points = {}
interpolator = LinearPowerCurveInterpolator(x, y)
for xp in np.linspace(xStart, xEnd, steps):
x = self.round(xp)
self.points[x] = interpolator(x)
def __call__(self, x):
return self.points[self.round(x)]
def round(self, x):
return round(x, 2)
class IndexPowerCurveInterpolator:
def __init__(self, x, y):
xStart = min(x)
xEnd = max(x)
xStep = 0.01
self.oneOverXStep = 1.0 / xStep
steps = int(xEnd / xStep) + 1
self.points = []
interpolator = interpolate.interp1d(x, y, kind='linear')
for x in np.linspace(0.0, xEnd, steps):
if x < xStart:
self.points.append(0.0)
else:
self.points.append(interpolator(x))
def __call__(self, x):
index = int(round(x * self.oneOverXStep, 0))
return self.points[index]
def round(self, x):
return round(x, 2)
class NearestPowerCurveInterpolator:
def __init__(self, x, y):
xStart = min(x)
xEnd = max(x)
xStep = 0.01
steps = int(xEnd / xStep) + 1
xp = []
yp = []
interpolator = interpolate.interp1d(x, y, kind='linear')
for x in np.linspace(xStart, xEnd, steps):
if x < xStart:
y = 0.0
else:
y = interpolator(x)
xp.append(x)
yp.append(y)
self.interpolator = interpolate.interp1d(xp, yp, kind='nearest')
def __call__(self, x):
return self.interpolator(x)