-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplots.py
232 lines (218 loc) · 14.9 KB
/
plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import pandas as pd
from Analysis import chckMake
np = pd.np
class MatplotlibPlotter(object):
def __init__(self,path, analysis):
self.path = path
self.analysis = analysis
def plot_multiple(self, windSpeedCol, powerCol, meanPowerCurveObj):
try:
from matplotlib import pyplot as plt
plt.ioff()
plotTitle = "Power Curve"
meanPowerCurve = meanPowerCurveObj.powerCurveLevels[[windSpeedCol,powerCol,'Data Count']][meanPowerCurveObj.powerCurveLevels['Data Count'] > 0 ].reset_index().set_index(windSpeedCol)
ax = meanPowerCurve[powerCol].plot(color='#00FF00',alpha=0.95,linestyle='--',label='Mean Power Curve')
colourmap = plt.cm.gist_ncar
colours = [colourmap(i) for i in np.linspace(0, 0.9, len(self.analysis.dataFrame[self.analysis.nameColumn].unique()))]
for i,name in enumerate(self.analysis.dataFrame[self.analysis.nameColumn].unique()):
ax = self.analysis.dataFrame[self.analysis.dataFrame[self.analysis.nameColumn] == name].plot(ax = ax, kind='scatter', x=windSpeedCol, y=powerCol, title=plotTitle, alpha=0.2, label=name, color = colours[i])
ax.legend(loc=4, scatterpoints = 1)
ax.set_xlim([min(self.analysis.dataFrame[windSpeedCol].min(),meanPowerCurve.index.min()), max(self.analysis.dataFrame[windSpeedCol].max(),meanPowerCurve.index.max()+2.0)])
ax.set_xlabel(windSpeedCol + ' (m/s)')
ax.set_ylabel(powerCol + ' (kW)')
file_out = self.path + "/Multiple Dataset PowerCurve - " + powerCol + " vs " + windSpeedCol + ".png"
chckMake(self.path)
plt.savefig(file_out)
plt.close()
return file_out
except:
print "Tried to make a power curve scatter chart for multiple data source (%s). Couldn't." % meanPowerCurveObj.name
def plotPowerCurveSensitivityVariationMetrics(self):
try:
from matplotlib import pyplot as plt
plt.ioff()
(self.analysis.powerCurveSensitivityVariationMetrics*100.).plot(kind = 'bar', title = 'Summary of Power Curve Variation by Variable. Significance Threshold = %.2f%%' % (self.analysis.sensitivityAnalysisThreshold * 100), figsize = (12,8))
plt.ylabel('Variation Metric (%)')
file_out = self.path + os.sep + 'Power Curve Sensitivity Analysis Variation Metric Summary.png'
plt.savefig(file_out)
plt.close('all')
except:
print "Tried to plot summary of Power Curve Sensitivity Analysis Variation Metric. Couldn't."
self.analysis.powerCurveSensitivityVariationMetrics.to_csv(self.path + os.sep + 'Power Curve Sensitivity Analysis Variation Metric.csv')
def plotPowerCurveSensitivity(self, sensCol):
try:
df = self.analysis.powerCurveSensitivityResults[sensCol].reset_index()
from matplotlib import pyplot as plt
plt.ioff()
fig = plt.figure(figsize = (12,5))
fig.suptitle('Power Curve Sensitivity to %s' % sensCol)
ax1 = fig.add_subplot(121)
ax1.hold(True)
ax2 = fig.add_subplot(122)
ax2.hold(True)
power_column = self.analysis.measuredTurbulencePower if self.analysis.turbRenormActive else self.analysis.actualPower
for label in self.analysis.sensitivityLabels.keys():
filt = df['Bin'] == label
ax1.plot(df['Wind Speed Bin'][filt], df[power_column][filt], label = label, color = self.analysis.sensitivityLabels[label])
ax2.plot(df['Wind Speed Bin'][filt], df['Energy Delta MWh'][filt], label = label, color = self.analysis.sensitivityLabels[label])
ax1.set_xlabel('Wind Speed (m/s)')
ax1.set_ylabel('Power (kW)')
ax2.set_xlabel('Wind Speed (m/s)')
ax2.set_ylabel('Energy Difference from Mean (MWh)')
box1 = ax1.get_position()
box2 = ax2.get_position()
ax1.set_position([box1.x0 - 0.05 * box1.width, box1.y0 + box1.height * 0.17,
box1.width * 0.95, box1.height * 0.8])
ax2.set_position([box2.x0 + 0.05 * box2.width, box2.y0 + box2.height * 0.17,
box2.width * 1.05, box2.height * 0.8])
handles, labels = ax1.get_legend_handles_labels()
fig.legend(handles, labels, loc='lower center', ncol = len(self.analysis.sensitivityLabels.keys()), fancybox = True, shadow = True)
file_out = self.path + os.sep + 'Power Curve Sensitivity to %s.png' % sensCol
chckMake(self.path)
fig.savefig(file_out)
plt.close()
except:
print "Tried to make a plot of power curve sensitivity to %s. Couldn't." % sensCol
def plotBy(self,by,variable,df):
import turbine
if not isinstance(df,turbine.PowerCurve):
kind = 'scatter'
else:
kind = 'line'
df=df.powerCurveLevels[df.powerCurveLevels['Input Hub Wind Speed'] <= self.analysis.allMeasuredPowerCurve.cutOutWindSpeed]
try:
from matplotlib import pyplot as plt
plt.ioff()
ax = df.plot(kind=kind,x=by ,y=variable,title=variable+" By " +by,alpha=0.6,legend=None)
ax.set_xlim([df[by].min()-1,df[by].max()+1])
ax.set_xlabel(by)
ax.set_ylabel(variable)
file_out = self.path + "/"+variable.replace(" ","_")+"_By_"+by.replace(" ","_")+".png"
chckMake(self.path)
plt.savefig(file_out)
plt.close()
return file_out
except:
print "Tried to make a " + variable.replace(" ","_") + "_By_"+by.replace(" ","_")+" chart. Couldn't."
def plotPowerCurve(self, windSpeedCol, powerCol, meanPowerCurveObj, anon = False, row_filt = None, fname = None, show_analysis_pc = True, mean_title = 'Mean Power Curve', mean_pc_color = '#00FF00'):
try:
from matplotlib import pyplot as plt
plt.ioff()
df = self.analysis.dataFrame.loc[row_filt, :] if row_filt is not None else self.analysis.dataFrame
if (windSpeedCol == self.analysis.densityCorrectedHubWindSpeed) or ((windSpeedCol == self.analysis.inputHubWindSpeed) and (self.analysis.densityCorrectionActive)):
plotTitle = "Power Curve (corrected to {dens} kg/m^3)".format(dens=self.analysis.referenceDensity)
else:
plotTitle = "Power Curve"
ax = df.plot(kind='scatter', x=windSpeedCol, y=powerCol, title=plotTitle, alpha=0.15, label='Filtered Data')
if self.analysis.specifiedPowerCurve is not None:
has_spec_pc = len(self.analysis.specifiedPowerCurve.powerCurveLevels.index) != 0
else:
has_spec_pc = False
if has_spec_pc:
ax = self.analysis.specifiedPowerCurve.powerCurveLevels.sort_index()['Specified Power'].plot(ax = ax, color='#FF0000',alpha=0.9,label='Specified')
if self.analysis.specifiedPowerCurve != self.analysis.powerCurve:
if ((self.analysis.powerCurve.name != 'All Measured') and show_analysis_pc):
ax = self.analysis.powerCurve.powerCurveLevels.sort_index()['Actual Power'].plot(ax = ax, color='#A37ACC',alpha=0.9,label=self.analysis.powerCurve.name)
meanPowerCurve = meanPowerCurveObj.powerCurveLevels[[windSpeedCol,powerCol,'Data Count']][self.analysis.allMeasuredPowerCurve.powerCurveLevels.loc[meanPowerCurveObj.powerCurveLevels.index, 'Data Count'] > 0].reset_index().set_index(windSpeedCol)
ax = meanPowerCurve[powerCol].plot(ax = ax,color=mean_pc_color,alpha=0.95,linestyle='--',
label=mean_title)
ax.legend(loc=4, scatterpoints = 1)
if has_spec_pc:
ax.set_xlim([self.analysis.specifiedPowerCurve.powerCurveLevels.index.min(), self.analysis.specifiedPowerCurve.powerCurveLevels.index.max()+2.0])
else:
ax.set_xlim([min(df[windSpeedCol].min(),meanPowerCurve.index.min()), max(df[windSpeedCol].max(),meanPowerCurve.index.max()+2.0)])
ax.set_xlabel(self.analysis.inputHubWindSpeedSource + ' (m/s)')
ax.set_ylabel(powerCol + ' (kW)')
if anon:
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
fname = ("PowerCurve - " + powerCol + " vs " + windSpeedCol + ".png") if fname is None else fname
file_out = self.path + os.sep + fname
chckMake(self.path)
plt.savefig(file_out)
plt.close()
return file_out
except:
raise
print "Tried to make a power curve scatter chart for %s. Couldn't." % meanPowerCurveObj.name
def plotTurbCorrectedPowerCurve(self, windSpeedCol, powerCol, meanPowerCurveObj):
try:
from matplotlib import pyplot as plt
plt.ioff()
if (windSpeedCol == self.analysis.densityCorrectedHubWindSpeed) or ((windSpeedCol == self.analysis.inputHubWindSpeed) and (self.analysis.densityCorrectionActive)):
plotTitle = "Power Curve (corrected to {dens} kg/m^3)".format(dens=self.analysis.referenceDensity)
else:
plotTitle = "Power Curve"
ax = self.analysis.dataFrame.plot(kind='scatter', x=windSpeedCol, y=powerCol, title=plotTitle, alpha=0.15, label='Filtered Data')
if self.analysis.specifiedPowerCurve is not None:
has_spec_pc = len(self.analysis.specifiedPowerCurve.powerCurveLevels.index) != 0
else:
has_spec_pc = False
if has_spec_pc:
ax = self.analysis.specifiedPowerCurve.powerCurveLevels.sort_index()['Specified Power'].plot(ax = ax, color='#FF0000',alpha=0.9,label='Specified')
meanPowerCurve = meanPowerCurveObj.powerCurveLevels[[windSpeedCol,powerCol,'Data Count']][self.analysis.allMeasuredPowerCurve.powerCurveLevels['Data Count'] > 0 ].reset_index().set_index(windSpeedCol)
ax = meanPowerCurve[powerCol].plot(ax = ax,color='#00FF00',alpha=0.95,linestyle='--',
label='Mean Power Curve')
ax2 = ax.twinx()
if has_spec_pc:
ax.set_xlim([self.analysis.specifiedPowerCurve.powerCurveLevels.index.min(), self.analysis.specifiedPowerCurve.powerCurveLevels.index.max()+2.0])
ax2.set_xlim([self.analysis.specifiedPowerCurve.powerCurveLevels.index.min(), self.analysis.specifiedPowerCurve.powerCurveLevels.index.max()+2.0])
else:
ax.set_xlim([min(self.analysis.dataFrame[windSpeedCol].min(),meanPowerCurve.index.min()), max(self.analysis.dataFrame[windSpeedCol].max(),meanPowerCurve.index.max()+2.0)])
ax2.set_xlim([min(self.analysis.dataFrame[windSpeedCol].min(),meanPowerCurve.index.min()), max(self.analysis.dataFrame[windSpeedCol].max(),meanPowerCurve.index.max()+2.0)])
ax.set_xlabel(self.analysis.inputHubWindSpeedSource + ' (m/s)')
ax.set_ylabel(powerCol + ' (kW)')
refTurbCol = 'Specified Turbulence' if self.analysis.powerCurveMode == 'Specified' else self.analysis.hubTurbulence
ax2.plot(self.analysis.powerCurve.powerCurveLevels.sort_index().index, self.analysis.powerCurve.powerCurveLevels.sort_index()[refTurbCol] * 100., 'm--', label = 'Reference TI')
ax2.set_ylabel('Reference TI (%)')
h1, l1 = ax.get_legend_handles_labels()
h2, l2 = ax2.get_legend_handles_labels()
ax.legend(h1+h2, l1+l2, loc=4, scatterpoints = 1)
file_out = self.path + "/PowerCurve TI Corrected - " + powerCol + " vs " + windSpeedCol + ".png"
chckMake(self.path)
plt.savefig(file_out)
plt.close()
return file_out
except:
print "Tried to make a TI corrected power curve scatter chart for %s. Couldn't." % meanPowerCurveObj.name
def plotPowerLimits(self):
try:
from matplotlib import pyplot as plt
plt.ioff()
windSpeedCol = self.analysis.densityCorrectedHubWindSpeed
ax = self.analysis.dataFrame.plot(kind='scatter',x=windSpeedCol,y=self.analysis.actualPower ,title="Power Values Corrected to {dens} kg/m^3".format(dens=self.analysis.referenceDensity),alpha=0.5,label='Power Mean')
ax = self.analysis.dataFrame.plot(ax=ax,kind='scatter',x=windSpeedCol,y="Power Min",alpha=0.2,label='Power Min',color = 'orange')
ax = self.analysis.dataFrame.plot(ax=ax,kind='scatter',x=windSpeedCol,y="Power Max",alpha=0.2,label='Power Max',color = 'green')
ax = self.analysis.dataFrame.plot(ax=ax,kind='scatter',x=windSpeedCol,y="Power SD",alpha=0.2,label='Power SD',color = 'purple')
ax = self.analysis.specifiedPowerCurve.powerCurveLevels.sort_index()['Specified Power'].plot(ax = ax, color='#FF0000',alpha=0.9,label='Specified')
ax.set_xlim([self.analysis.specifiedPowerCurve.powerCurveLevels.index.min(), self.analysis.specifiedPowerCurve.powerCurveLevels.index.max()+2.0])
ax.legend(loc=4, scatterpoints = 1)
ax.set_xlabel(windSpeedCol)
ax.set_ylabel("Power [kW]")
file_out = self.path + "/PowerValues.png"
chckMake(self.path)
plt.savefig(file_out)
plt.close()
return file_out
except:
print "Tried to make a full power scatter chart. Couldn't."
def plotCalibrationSectors(self):
for datasetConf in self.analysis.datasetConfigs:
try:
from matplotlib import pyplot as plt
plt.ioff()
df = datasetConf.data.calibrationCalculator.calibrationSectorDataframe[['pctSpeedUp','LowerLimit','UpperLimit']].rename(columns={'pctSpeedUp':'% Speed Up','LowerLimit':"IEC Lower",'UpperLimit':"IEC Upper"})
df.plot(kind = 'line', title = 'Variation of wind speed ratio with direction', figsize = (12,8))
plt.ylabel('Wind Speed Ratio (Vturb/Vref) as %')
file_out = self.path + os.sep + 'Wind Speed Ratio with Direction - All Sectors {nm}.png'.format(nm=datasetConf.name)
plt.savefig(file_out)
df = df.loc[np.logical_and(df.index > datasetConf.data.fullDataFrame[datasetConf.data.referenceDirectionBin].min()-5.0 , df.index < datasetConf.data.fullDataFrame[datasetConf.data.referenceDirectionBin].max()+5.0),:]
df.plot(kind = 'line', title = 'Variation of wind speed ratio with direction', figsize = (12,8))
plt.ylabel('Wind Speed Ratio (Vturb/Vref) as %')
file_out = self.path + os.sep + 'Wind Speed Ratio with Direction - Selected Sectors {nm}.png'.format(nm=datasetConf.name)
chckMake(self.path)
plt.savefig(file_out)
plt.close('all')
except:
print "Tried to plot variation of wind speed ratio with direction. Couldn't."