-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathturbine.py
547 lines (360 loc) · 20.3 KB
/
turbine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import math
import interpolators
import scipy.interpolate
import numpy as np
import scipy as sp
from scipy import stats
import sys
import pandas as pd
class PowerCurve:
def __init__(self, powerCurveLevels, referenceDensity, rotorGeometry, powerCol, turbCol, wsCol = None,
countCol = None, fixedTurbulence = None, ratedPower = None,turbulenceRenormalisation=True, name = 'Undefined'):
self.actualPower = powerCol #strings defining column names
self.inputHubWindSpeed = wsCol
self.hubTurbulence = turbCol
self.dataCount = countCol
self.name = name
if (self.hubTurbulence is not None) and fixedTurbulence != None:
raise Exception("Cannot specify both turbulence levels and fixed turbulence")
self.availablePower = AvailablePower(rotorGeometry.area, referenceDensity)
self.powerCurveLevels = powerCurveLevels
self.referenceDensity = referenceDensity
self.rotorGeometry = rotorGeometry
has_pc = len(self.powerCurveLevels.index) != 0
self.firstWindSpeed = min(self.powerCurveLevels.index) if has_pc else None
self.cutInWindSpeed = self.calculateCutInWindSpeed(powerCurveLevels) if has_pc else None
self.cutOutWindSpeed = self.calculateCutOutWindSpeed(powerCurveLevels) if has_pc else None
if self.inputHubWindSpeed is None:
ws_data = None
else:
ws_data = powerCurveLevels[self.inputHubWindSpeed]
self.powerFunction = self.createFunction(powerCurveLevels[self.actualPower], ws_data) if has_pc else None
self.ratedPower = self.getRatedPower(ratedPower, powerCurveLevels[self.actualPower]) if has_pc else None
if 'Data Count' in self.powerCurveLevels.columns:
self.hours = self.powerCurveLevels['Data Count'].sum()*1.0/6.0
else:
self.hours = 0.0
self.turbulenceFunction = self.createFunction(powerCurveLevels[self.hubTurbulence], ws_data) if has_pc else None
if (turbulenceRenormalisation and has_pc):
print "Calculating zero turbulence curve for {0} Power Curve".format(self.name)
try:
self.calcZeroTurbulencePowerCurve()
print "Calculation of zero turbulence curve for {0} Power Curve successful".format(self.name)
except Exception as error:
print error
print "Calculation of zero turbulence curve for {0} Power Curve unsuccessful".format(self.name)
self.zeroTurbulencePowerCurve = None
self.simulatedPower = None
def calcZeroTurbulencePowerCurve(self):
keys = sorted(self.powerCurveLevels[self.actualPower].keys())
integrationRange = IntegrationRange(0.0, 100.0, 0.1)
self.zeroTurbulencePowerCurve = ZeroTurbulencePowerCurve(keys, self.getArray(self.powerCurveLevels[self.actualPower], keys), self.getArray(self.powerCurveLevels[self.hubTurbulence], keys), integrationRange, self.availablePower)
self.simulatedPower = SimulatedPower(self.zeroTurbulencePowerCurve, integrationRange)
def getRatedPower(self, ratedPower, powerCurveLevels):
if ratedPower == None:
return powerCurveLevels.max()
else:
return ratedPower
def getThresholdWindSpeed(self):
return float(interpolators.LinearPowerCurveInterpolator(self.powerCurveLevels[self.actualPower].as_matrix(), list(self.powerCurveLevels[self.actualPower].index))(0.85*self.ratedPower))
def getTurbulenceLevels(self, powerCurveLevels, turbulenceLevels, fixedTurbulence):
if fixedTurbulence != None:
turbulenceLevels = pd.Series(index = powerCurveLevels.index)
for level in powerCurveLevels.index:
turbulenceLevels[level] = fixedTurbulence
else:
turbulenceLevels = turbulenceLevels
return turbulenceLevels
def getArray(self, dictionary, keys):
array = []
for key in keys:
array.append(dictionary[key])
return array
def createFunction(self, y_data, x_data):
if x_data is None:
x_data = pd.Series(y_data.index, index = y_data.index)
x, y = [], []
for i in y_data.index:
if i in x_data.index:
x.append(x_data[i])
else:
x.append(i)
y.append(y_data[i])
return interpolators.LinearPowerCurveInterpolator(x, y)
def power(self, windSpeed, turbulence = None, extraTurbCorrection = False):
referencePower = self.powerFunction(windSpeed)
if turbulence == None:
power = referencePower
else:
referenceTurbulence = self.referenceTurbulence(windSpeed)
power = referencePower + self.simulatedPower.power(windSpeed, turbulence) - self.simulatedPower.power(windSpeed, referenceTurbulence)
if extraTurbCorrection: power *= self.calculateExtraTurbulenceCorrection(windSpeed, turbulence, referenceTurbulence)
power = max([0.0, power])
power = min([self.ratedPower, power])
return power
def calculateExtraTurbulenceCorrection(self, windSpeed, turbulence, referenceTurbulence):
saddle = 9.0
xprime = saddle - windSpeed
tprime = (referenceTurbulence - turbulence) / referenceTurbulence
if xprime < 0.0 or tprime < 0.0: return 1.0
a = -0.02 * math.tanh(2.0 * tprime)
b = -0.03 * (math.exp(1.5 * tprime) - 1.0)
loss = a * xprime + b
return 1 + loss
def referenceTurbulence(self, windSpeed):
if windSpeed < self.firstWindSpeed:
return self.turbulenceFunction(self.firstWindSpeed)
elif windSpeed > self.cutOutWindSpeed:
return self.turbulenceFunction(self.cutOutWindSpeed)
else:
return self.turbulenceFunction(windSpeed)
def calculateCutInWindSpeed(self, powerCurveLevels):
return min(self.nonZeroLevels(powerCurveLevels))
def calculateCutOutWindSpeed(self, powerCurveLevels):
return max(self.nonZeroLevels(powerCurveLevels))
def nonZeroLevels(self, powerCurveLevels):
levels = []
for windSpeed in self.powerCurveLevels.index:
if self.powerCurveLevels[self.actualPower][windSpeed] > 0.0:
levels.append(windSpeed)
return levels
def __str__(self):
value = "Wind Speed\tPower\n"
for windSpeed in self.powerCurveLevels:
value += "%0.2f\t%0.2f\n" % (windSpeed, self.power(windSpeed))
return value
class RotorGeometry:
def __init__(self, diameter, hubHeight):
self.diameter = diameter
self.radius = diameter / 2
self.area = math.pi * self.radius ** 2
self.hubHeight = hubHeight
self.lowerTip = self.hubHeight - self.radius
self.upperTip = self.hubHeight + self.radius
def withinRotor(self, height):
return height > self.lowerTip and height < self.upperTip
class InterpolatedNormDist:
def __init__(self):
#speed optimisation
self.xstep = 0.05
self.xend = 5.0
self.xstart = -self.xend
self.steps = int((self.xend - self.xstart) / self.xstep) + 1
x = np.linspace(self.xstart, self.xend, self.steps)
y = []
normDist = NormDist()
for i in range(len(x)):
y.append(normDist.probability(x[i], 0.0, 1.0))
self.f = scipy.interpolate.interp1d(x, y, bounds_error = False, fill_value = 0.0)
def probability(self, windSpeed, windSpeedMean, windSpeedStandardDeviation):
oneOverStandardDeviation = 1.0 / windSpeedStandardDeviation
standardDeviationsFromMean = oneOverStandardDeviation * (windSpeed - windSpeedMean)
return self.f(standardDeviationsFromMean) * oneOverStandardDeviation
class DictionaryNormDist:
def __init__(self):
#speed optimisation
self.decimalPlaces = 2
self.xstep = 0.1 ** self.decimalPlaces
self.xend = 5.0
self.xstart = -self.xend
x = np.arange(self.xstart, self.xend + self.xstep, self.xstep)
self.dictionary = {}
normDist = NormDist()
for i in range(len(x)):
self.dictionary[self.key(x[i])] = normDist.probability(x[i], 0.0, 1.0)
def probability(self, windSpeed, windSpeedMean, windSpeedStandardDeviation):
oneOverStandardDeviation = self.oneOver(windSpeedStandardDeviation)
standardDeviationsFromMean = self.standardDeviationsFromMean(windSpeed, windSpeedMean, oneOverStandardDeviation)
if self.inDictionary(standardDeviationsFromMean):
return self.lookUpDictionary(standardDeviationsFromMean) * oneOverStandardDeviation
else:
return 0.0
def oneOver(self, value):
return 1.0 / value
def standardDeviationsFromMean(self, value, mean, oneOverStandardDeviation):
return oneOverStandardDeviation * (value - mean)
def inDictionary(self, value):
if value < self.xstart: return False
if value > self.xend: return False
return True
def lookUpDictionary(self, value):
return self.dictionary[self.key(value)]
def key(self, value):
return round(value, self.decimalPlaces)
class IntegrationProbabilities:
def __init__(self, windSpeeds, windSpeedStep):
#speed otpimised normal distribution
self.windSpeeds = windSpeeds
self.a = windSpeedStep / math.sqrt(2.0 * math.pi)
def probabilities(self, windSpeedMean, windSpeedStdDev):
if windSpeedStdDev == 0:
return np.nan
oneOverStandardDeviation = 1.0 / windSpeedStdDev
oneOverStandardDeviationSq = oneOverStandardDeviation * oneOverStandardDeviation
b = self.a * oneOverStandardDeviation
c = -0.5 * oneOverStandardDeviationSq
windSpeedMinusMeans = (self.windSpeeds - windSpeedMean)
windSpeedMinusMeanSq = windSpeedMinusMeans * windSpeedMinusMeans
d = c * windSpeedMinusMeanSq
return b * np.exp(d)
class IntegrationRange:
def __init__(self, minimumWindSpeed, maximumWindSpeed, windSpeedStep):
self.minimumWindSpeed = minimumWindSpeed
self.maximumWindSpeed = maximumWindSpeed
self.windSpeedStep = windSpeedStep
self.windSpeeds = np.arange(minimumWindSpeed, maximumWindSpeed, windSpeedStep)
self.integrationProbabilities = IntegrationProbabilities(self.windSpeeds, self.windSpeedStep)
def probabilities(self, windSpeedMean, windSpeedStdDev):
return self.integrationProbabilities.probabilities(windSpeedMean, windSpeedStdDev)
class AvailablePower:
def __init__(self, area, density):
self.area = area
self.density = density
def power(self, windSpeed):
return 0.5 * self.density * self.area * windSpeed * windSpeed * windSpeed / 1000.0
def powerCoefficient(self, windSpeed, actualPower):
return actualPower / self.power(windSpeed)
class ZeroTurbulencePowerCurve:
def __init__(self, referenceWindSpeeds, referencePowers, referenceTurbulences, integrationRange, availablePower):
self.integrationRange = integrationRange
self.initialZeroTurbulencePowerCurve = InitialZeroTurbulencePowerCurve(referenceWindSpeeds, referencePowers, referenceTurbulences, integrationRange, availablePower)
simulatedReferencePowerCurve = SimulatedPowerCurve(referenceWindSpeeds, self.initialZeroTurbulencePowerCurve, referenceTurbulences, integrationRange)
self.windSpeeds = referenceWindSpeeds
self.powers = []
for i in range(len(self.windSpeeds)):
power = referencePowers[i] - simulatedReferencePowerCurve.powers[i] + self.initialZeroTurbulencePowerCurve.powers[i]
self.powers.append(power)
#print "%f %f" % (self.windSpeeds[i], self.powers[i])
self.powerFunction = scipy.interpolate.interp1d(self.windSpeeds, self.powers)
self.minWindSpeed = min(self.windSpeeds)
self.maxWindSpeed = max(self.windSpeeds)
self.maxPower = max(self.powers)
self.dfPowerLevels = pd.DataFrame(self.powers, index = self.windSpeeds, columns = ['Power'])
def power(self, windSpeed):
if windSpeed <= self.minWindSpeed:
return 0.0
elif windSpeed >= self.maxWindSpeed:
return self.maxPower
else:
return self.powerFunction(windSpeed)
class InitialZeroTurbulencePowerCurve:
def __init__(self, referenceWindSpeeds, referencePowers, referenceTurbulences, integrationRange, availablePower):
self.maxIterations = 5
self.integrationRange = integrationRange
self.availablePower = availablePower
self.referenceWindSpeeds = referenceWindSpeeds
self.referencePowers = referencePowers
self.referenceTurbulences = referenceTurbulences
self.referencePowerCurveStats = IterationPowerCurveStats(referenceWindSpeeds, referencePowers, availablePower)
#print "%f %f %f" % (self.referencePowerCurveStats.ratedPower, self.referencePowerCurveStats.cutInWindSpeed, self.referencePowerCurveStats.cpMax)
self.selectedStats = self.solve(self.referencePowerCurveStats)
selectedIteration = InitialZeroTurbulencePowerCurveIteration(referenceWindSpeeds,
self.availablePower,
self.selectedStats.ratedPower,
self.selectedStats.cutInWindSpeed,
self.selectedStats.cpMax)
self.ratedWindSpeed = selectedIteration.ratedWindSpeed
self.windSpeeds = selectedIteration.windSpeeds
self.powers = selectedIteration.powers
self.power = selectedIteration.power
def solve(self, previousIterationStats, iterationCount = 1):
if iterationCount > self.maxIterations: raise Exception("Failed to solve initial zero turbulence curve in permitted number of iterations")
iterationZeroTurbCurve = InitialZeroTurbulencePowerCurveIteration(self.integrationRange.windSpeeds,
self.availablePower,
previousIterationStats.ratedPower,
previousIterationStats.cutInWindSpeed,
previousIterationStats.cpMax)
iterationSimulatedCurve = SimulatedPowerCurve(self.referenceWindSpeeds, iterationZeroTurbCurve, self.referenceTurbulences, self.integrationRange)
iterationSimulatedCurveStats = IterationPowerCurveStats(iterationSimulatedCurve.windSpeeds, iterationSimulatedCurve.powers, self.availablePower)
convergenceCheck = IterationPowerCurveConvergenceCheck(self.referencePowerCurveStats, iterationSimulatedCurveStats)
#print "%f %f %f" % (iterationSimulatedCurveStats.ratedPower, iterationSimulatedCurveStats.cutInWindSpeed, iterationSimulatedCurveStats.cpMax)
#print "%s %s %s" % (convergenceCheck.ratedPowerConverged, convergenceCheck.cutInConverged, convergenceCheck.cpMaxConverged)
if convergenceCheck.isConverged:
return previousIterationStats
else:
return self.solve(IncrementedPowerCurveStats(previousIterationStats, convergenceCheck), iterationCount + 1)
class IterationPowerCurveConvergenceCheck:
def __init__(self, referenceStats, iterationStats):
self.threholdPowerDiff = referenceStats.ratedPower * 0.001
self.threholdCutInWindSpeedDiff = 0.5
self.threholdCpMaxDiff = 0.01
self.ratedPowerDiff = iterationStats.ratedPower - referenceStats.ratedPower
self.cutInDiff = iterationStats.cutInWindSpeed - referenceStats.cutInWindSpeed
self.cpMaxDiff = iterationStats.cpMax - referenceStats.cpMax
self.ratedPowerConverged = abs(self.ratedPowerDiff) < self.threholdPowerDiff
self.cutInConverged = abs(self.cutInDiff) <= self.threholdCutInWindSpeedDiff
self.cpMaxConverged = abs(self.cpMaxDiff) <= self.threholdCpMaxDiff
self.isConverged = self.ratedPowerConverged and self.cutInConverged and self.cpMaxConverged
class IncrementedPowerCurveStats:
def __init__(self, previousIterationStats, convergenceCheck):
if convergenceCheck.ratedPowerConverged:
self.ratedPower = previousIterationStats.ratedPower
else:
self.ratedPower = previousIterationStats.ratedPower - convergenceCheck.ratedPowerDiff
if convergenceCheck.cutInConverged:
self.cutInWindSpeed = previousIterationStats.cutInWindSpeed
else:
self.cutInWindSpeed = previousIterationStats.cutInWindSpeed - convergenceCheck.cutInDiff
if convergenceCheck.cpMaxConverged:
self.cpMax = previousIterationStats.cpMax
else:
self.cpMax = previousIterationStats.cpMax - convergenceCheck.cpMaxDiff
class InitialZeroTurbulencePowerCurveIteration:
def __init__(self, windSpeeds, availablePower, ratedPower, cutInWindSpeed, cpMax):
self.windSpeeds = windSpeeds
self.powers = []
self.ratedWindSpeed = ((2.0 * ratedPower * 1000.0)/(availablePower.density * cpMax * availablePower.area)) ** (1.0 / 3.0)
self.ratedPower = ratedPower
self.cutInWindSpeed = cutInWindSpeed
self.cpMax = cpMax
self.availablePower = availablePower
for windSpeed in self.windSpeeds:
self.powers.append(self.power(windSpeed))
def power(self, windSpeed):
if windSpeed > self.cutInWindSpeed:
if windSpeed < self.ratedWindSpeed:
return self.availablePower.power(windSpeed) * self.cpMax
else:
return self.ratedPower
else:
return 0.0
class IterationPowerCurveStats:
def __init__(self, windSpeeds, powers, availablePower):
self.ratedPower = max(powers)
thresholdPower = self.ratedPower * 0.001
operatingWindSpeeds = []
cps = []
for i in range(len(windSpeeds)):
windSpeed = windSpeeds[i]
power = powers[i]
cp = availablePower.powerCoefficient(windSpeed, power)
cps.append(availablePower.powerCoefficient(windSpeed, power))
if power >= thresholdPower: operatingWindSpeeds.append(windSpeed)
self.cpMax = max(cps)
if len(operatingWindSpeeds) > 0:
self.cutInWindSpeed = min(operatingWindSpeeds)
else:
self.cutInWindSpeed = 0.0
class SimulatedPower:
def __init__(self, zeroTurbulencePowerCurve, integrationRange):
self.zeroTurbulencePowerCurve = zeroTurbulencePowerCurve
self.integrationRange = integrationRange
integrationPowers = []
for windSpeed in np.nditer(self.integrationRange.windSpeeds):
integrationPowers.append(self.zeroTurbulencePowerCurve.power(windSpeed))
self.integrationPowers = np.array(integrationPowers)
def power(self, windSpeed, turbulence):
standardDeviation = windSpeed * turbulence
integrationProbabilities = self.integrationRange.probabilities(windSpeed, standardDeviation)
return np.sum(integrationProbabilities * self.integrationPowers) / np.sum(integrationProbabilities)
class SimulatedPowerCurve:
def __init__(self, windSpeeds, zeroTurbulencePowerCurve, turbulences, integrationRange):
simulatedPower = SimulatedPower(zeroTurbulencePowerCurve, integrationRange)
self.windSpeeds = windSpeeds
self.turbulences = turbulences
self.powers = []
for i in range(len(windSpeeds)):
windSpeed = windSpeeds[i]
turbulence = turbulences[i]
power = simulatedPower.power(windSpeed, turbulence)
self.powers.append(power)