-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
268 lines (225 loc) · 10.4 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import argparse
import multiprocessing
import pickle
import time
import dgl
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm
from features.generateFeatures import smiles_to_graph_batch, smile_to_smile_to_image, smile_to_mordred, smiles_to_smiles
from features.smiles import get_vocab
DEBUG = False
if torch.cuda.is_available():
import torch.backends.cudnn
torch.backends.cudnn.benchmark = True
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--mode', choices=['graph', 'image', 'desc', 'smiles'], required=True,
help='model and feature style to use.')
parser.add_argument('-w', type=int, default=8, help='number of workers for data loaders to use.')
parser.add_argument('-g', type=int, default=1, help='number of gpu workers for inference to use.')
parser.add_argument('-b', type=int, default=64, help='batch size to use')
parser.add_argument('-o', type=str, default='saved_models/model.pt', help='name of file to save model to')
parser.add_argument('-r', type=int, default=32, help='random seed for splitting.')
parser.add_argument('--num_smiles', type=int, required=False, help='Limit number of smiles for testing.')
parser.add_argument('--smiles_file', type=str, required=True, help='SMILES format file to use for inferences.')
parser.add_argument('--output_file', type=str, required=True, help='Output for predictions.')
return parser.parse_args()
def get_feature_prodcer(mode):
if mode == 'desc':
with open("data/imputer.pkl", 'rb') as f:
imps = pickle.load(f)
return smile_to_mordred, (imps,)
elif mode == 'graph':
return smiles_to_graph_batch, tuple()
elif mode == 'image':
return smile_to_smile_to_image, (128, 128)
elif mode == 'smiles':
return smiles_to_smiles, (get_vocab(),)
'''
cell_features is a numpy array of feature data without names
cell_names is a matching list of cell names.
'''
def feature_worker(args, smile_queue, feature_queue, cell_features, cell_names, id, stop):
iter_counter = 0
feature_producer, argsfp = get_feature_prodcer(args.mode)
while not stop.value or not smile_queue.empty():
while not smile_queue.empty():
res = smile_queue.get()
if res is not None:
smile, drug_name = res
try:
if args.mode == 'graph':
drug_features = feature_producer(smile, cell_features.shape[0])
else:
drug_features = feature_producer(smile, argsfp)
assert (drug_features is not None)
except AssertionError:
print("Smile error....")
continue
if args.mode == 'graph':
feature_queue.put(
(drug_features,
torch.from_numpy(cell_features).float(),
smile, drug_name, cell_names))
if args.mode == 'image':
feature_queue.put(
(torch.from_numpy(drug_features).float().unsqueeze(0).repeat([cell_features.shape[0], 1, 1, 1]),
torch.from_numpy(cell_features).float(),
smile, drug_name, cell_names))
else:
feature_queue.put(
(torch.from_numpy(drug_features).float().unsqueeze(0).repeat([cell_features.shape[0], 1]),
torch.from_numpy(cell_features).float(),
smile, drug_name, cell_names))
iter_counter += 1
if DEBUG and iter_counter % 100 == 0:
print(id, "did ", iter_counter)
time.sleep(3)
def infer(feature_queue, out_queue, model_path, cuda_id, mode, smiles_counter, stop):
print("Starting gpu worker", cuda_id)
iter_counter = 0
if torch.cuda.is_available():
device = torch.device("cuda:" + str(cuda_id))
else:
device = torch.device("cpu")
model = torch.load(model_path, map_location=device)
model = model['inference_model']
model.eval()
print("Model loaded.")
with torch.no_grad():
while not stop.value:
while not feature_queue.empty():
res = feature_queue.get()
if res is not None:
smiles_counter.value += 1
if mode == 'desc' or mode == 'image' or mode == 'smiles':
drug_features, cell_features, smile, name, cell_names = res
if mode == 'smiles':
drug_features = drug_features.long().to(device)
cell_features = cell_features.to(device)
preds = model(cell_features, drug_features)
else:
drug_features, cell_features, smile, name, cell_names = res
cell_features = cell_features.to(device)
g = drug_features
h = g.ndata['atom_features'].to(device)
preds = model(cell_features, g, h)
preds = preds.detach().cpu().numpy().flatten()
out_queue.put({'preds': preds, 'smile': smile, 'drug_name': name, 'cell_names': cell_names})
iter_counter += 1
if DEBUG and iter_counter % 100 == 0:
print('cuda', cuda_id, "did ", iter_counter)
time.sleep(3)
return True
def writer_worker(outfile, out_queue, stop):
with open(outfile, 'w') as f:
f.write(",".join(["cell_name", "drug_name", 'drug_smiles', "pred_auc"]) + "\n")
while not stop.value:
while not out_queue.empty():
res = out_queue.get(timeout=10)
if res is not None:
preds = res['preds']
drug_name = res['drug_name']
smile = res['smile']
for i, cell_name in enumerate(res['cell_names']):
f.write(
",".join([str(cell_name), str(drug_name), str(smile), str(preds[i])]) + '\n'
)
return True
if __name__ == '__main__':
multiprocessing.set_start_method("spawn") # needed for cuda.
args = get_args()
np.random.seed(args.r)
torch.manual_seed(args.r) # may not be fully reproducible without deterministic cuda, but this should be ok.
print("Loading base frame. ")
cell_frame = pd.read_pickle("data/cellpickle.pkl")
cell_names = cell_frame.iloc[:, 0]
cell_features = np.array(cell_frame.iloc[:, 1:], dtype=np.float32)
print("Extracted", cell_frame.shape[0], 'cells for inference.')
## Loading smiles frame.
smiles = pd.read_csv(args.smiles_file, sep=' ', header=None, names=['SMILES', 'name'])
if args.num_smiles is not None:
args.num_smiles = min(args.num_smiles, smiles.shape[0])
print("Limiting smiles to", args.num_smiles)
smiles = smiles.iloc[:args.num_smiles]
print("Loaded", smiles.shape[0], "SMILES.")
feature_workers = []
gpu_workers = []
smiles_queue = multiprocessing.Queue()
feature_queue = multiprocessing.Queue()
out_queue = multiprocessing.Queue()
smiles_counter = multiprocessing.Value('i', 0)
workers_stop = multiprocessing.Value('b', False)
writer_stop = multiprocessing.Value('b', False)
gpu_stop = multiprocessing.Value('b', False)
for i in range(args.w):
feature_workers.append(multiprocessing.Process(target=feature_worker, args=(
args, smiles_queue, feature_queue, cell_features, cell_names, i, workers_stop)))
for i in range(args.g):
gpu_workers.append(
multiprocessing.Process(target=infer,
args=(feature_queue, out_queue, args.o, i, args.mode, smiles_counter, gpu_stop)))
writer_proc = multiprocessing.Process(target=writer_worker, args=(args.output_file, out_queue, writer_stop))
writer_proc.start()
for proc in gpu_workers:
proc.start()
for proc in feature_workers:
proc.start()
start_time = time.time()
print("Putting smiles in queue...")
for i, row in tqdm(smiles.iterrows(), desc='smile queue filling'):
smiles_queue.put((row['SMILES'], row['name']))
while not smiles_queue.empty():
try:
print("SMILES QUEUE", smiles_queue.qsize(),
"FEATURE QUEUE", feature_queue.qsize(),
"OUT QUEUE", out_queue.qsize())
except NotImplementedError:
print("Queue size not avilable on your system...\n",
"SMILES QUEUE empty", smiles_queue.empty(),
"FEATURE QUEUE empty", feature_queue.empty(),
"OUT QUEUE empty", out_queue.empty()
)
time.sleep(10)
while not feature_queue.empty():
try:
print("SMILES QUEUE", smiles_queue.qsize(),
"FEATURE QUEUE", feature_queue.qsize(),
"OUT QUEUE", out_queue.qsize())
except NotImplementedError:
print("Queue size not avilable on your system...\n",
"SMILES QUEUE empty", smiles_queue.empty(),
"FEATURE QUEUE empty", feature_queue.empty(),
"OUT QUEUE empty", out_queue.empty()
)
time.sleep(10)
print("Turning off gpu worker.")
gpu_stop.value = True
end_time = time.time()
workers_stop.value = True
print("Turning off feature workers.")
while not out_queue.empty():
try:
print("SMILES QUEUE", smiles_queue.qsize(),
"FEATURE QUEUE", feature_queue.qsize(),
"OUT QUEUE", out_queue.qsize())
except NotImplementedError:
print("Queue size not avilable on your system...\n",
"SMILES QUEUE empty", smiles_queue.empty(),
"FEATURE QUEUE empty", feature_queue.empty(),
"OUT QUEUE empty", out_queue.empty()
)
time.sleep(10)
print("Turning off writer worker.")
writer_stop.value = True
for proc in feature_workers:
proc.join()
writer_proc.join()
for proc in gpu_workers:
proc.join()
print("Done.")
print("total smiles inferenced on: ", smiles_counter.value)
print("total time", end_time - start_time)
print("Smiles per second", smiles_counter.value / (end_time - start_time))