Skip to content

Commit dfc6fd4

Browse files
Update docs
1 parent 20349a0 commit dfc6fd4

27 files changed

+380
-150
lines changed

docs/examples/Classification.html

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -527,8 +527,8 @@
527527
</style>
528528
<section id="Classification">
529529
<h1>Classification<a class="headerlink" href="#Classification" title="Permalink to this headline"></a></h1>
530-
<div class="btn btn-notebook" role="button"><p><img alt="d369b276b4744b0cab3f36e8b5537d40" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
531-
</div><div class="btn btn-notebook" role="button"><p><img alt="894a8bd476554520a14e5f91493961df" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
530+
<div class="btn btn-notebook" role="button"><p><img alt="1c1527ebd2d8455f981eac128806a646" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
531+
</div><div class="btn btn-notebook" role="button"><p><img alt="6bd6895ad3024031bf63c3e2f1c4207a" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
532532
</div><p>You will find here the application of DA methods from the ADAPT package on a simple two dimensional DA classification problem.</p>
533533
<p>First we import packages needed in the following. We will use <code class="docutils literal notranslate"><span class="pre">matplotlib</span> <span class="pre">Animation</span></code> tools in order to get a visual understanding of the mselected methods:</p>
534534
<div class="nbinput nblast docutils container">
@@ -643,7 +643,7 @@ <h2>Experimental Setup<a class="headerlink" href="#Experimental-Setup" title="Pe
643643
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">tensorflow.keras.callbacks</span> <span class="kn">import</span> <span class="n">Callback</span>
644644

645645
<span class="k">class</span> <span class="nc">SavePrediction</span><span class="p">(</span><span class="n">Callback</span><span class="p">):</span>
646-
<span class="sd">&quot;&quot;&quot;</span>
646+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
647647
<span class="sd"> Callbacks which stores predicted</span>
648648
<span class="sd"> labels in history at each epoch.</span>
649649
<span class="sd"> &quot;&quot;&quot;</span>
@@ -655,7 +655,7 @@ <h2>Experimental Setup<a class="headerlink" href="#Experimental-Setup" title="Pe
655655
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
656656

657657
<span class="k">def</span> <span class="nf">on_epoch_end</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">,</span> <span class="n">logs</span><span class="o">=</span><span class="p">{}):</span>
658-
<span class="sd">&quot;&quot;&quot;Applied at the end of each epoch&quot;&quot;&quot;</span>
658+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Applied at the end of each epoch&quot;&quot;&quot;</span>
659659
<span class="n">predictions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">predict_on_batch</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">X_grid</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
660660
<span class="bp">self</span><span class="o">.</span><span class="n">custom_history_grid_</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>
661661
<span class="n">predictions</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">predict_on_batch</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">Xt</span><span class="p">)</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
@@ -750,7 +750,7 @@ <h2>DANN<a class="headerlink" href="#DANN" title="Permalink to this headline">
750750
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">tensorflow.keras.callbacks</span> <span class="kn">import</span> <span class="n">Callback</span>
751751

752752
<span class="k">class</span> <span class="nc">SavePredictionDann</span><span class="p">(</span><span class="n">Callback</span><span class="p">):</span>
753-
<span class="sd">&quot;&quot;&quot;</span>
753+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
754754
<span class="sd"> Callbacks which stores predicted</span>
755755
<span class="sd"> labels in history at each epoch.</span>
756756
<span class="sd"> &quot;&quot;&quot;</span>
@@ -767,7 +767,7 @@ <h2>DANN<a class="headerlink" href="#DANN" title="Permalink to this headline">
767767
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
768768

769769
<span class="k">def</span> <span class="nf">on_epoch_end</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">,</span> <span class="n">logs</span><span class="o">=</span><span class="p">{}):</span>
770-
<span class="sd">&quot;&quot;&quot;Applied at the end of each epoch&quot;&quot;&quot;</span>
770+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Applied at the end of each epoch&quot;&quot;&quot;</span>
771771
<span class="n">predictions</span> <span class="o">=</span> <span class="n">model</span><span class="o">.</span><span class="n">task_</span><span class="o">.</span><span class="n">predict_on_batch</span><span class="p">(</span>
772772
<span class="n">model</span><span class="o">.</span><span class="n">encoder_</span><span class="o">.</span><span class="n">predict_on_batch</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">X_grid</span><span class="p">))</span><span class="o">.</span><span class="n">reshape</span><span class="p">(</span><span class="mi">100</span><span class="p">,</span> <span class="mi">100</span><span class="p">)</span>
773773
<span class="bp">self</span><span class="o">.</span><span class="n">custom_history_grid_</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">predictions</span><span class="p">)</span>

docs/examples/Developer_Guide.html

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -567,7 +567,7 @@ <h3>2.1 Implementing a classic DA method<a class="headerlink" href="#2.1-Impleme
567567

568568
<span class="k">class</span> <span class="nc">SrcPCA</span><span class="p">(</span><span class="n">BaseAdaptEstimator</span><span class="p">):</span>
569569
<span class="c1"># Write a description of the algorithm, parameters and attributes.</span>
570-
<span class="sd">&quot;&quot;&quot;</span>
570+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
571571
<span class="sd"> SrcPCA : Source PCA</span>
572572

573573
<span class="sd"> SrcPCA learns the PCA on the source domain and applies it on the</span>
@@ -604,7 +604,7 @@ <h3>2.1 Implementing a classic DA method<a class="headerlink" href="#2.1-Impleme
604604

605605

606606
<span class="k">def</span> <span class="nf">fit_transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">Xs</span><span class="p">,</span> <span class="n">Xt</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
607-
<span class="sd">&quot;&quot;&quot;</span>
607+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
608608
<span class="sd"> Fit embeddings.</span>
609609

610610
<span class="sd"> Parameters</span>
@@ -630,7 +630,7 @@ <h3>2.1 Implementing a classic DA method<a class="headerlink" href="#2.1-Impleme
630630

631631

632632
<span class="k">def</span> <span class="nf">transform</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">X</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
633-
<span class="sd">&quot;&quot;&quot;</span>
633+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
634634
<span class="sd"> Return aligned features for X.</span>
635635

636636
<span class="sd"> Parameters</span>
@@ -732,7 +732,7 @@ <h3>2.2 Implementing a deep DA method<a class="headerlink" href="#2.2-Implementi
732732

733733
<span class="k">class</span> <span class="nc">CenterDomains</span><span class="p">(</span><span class="n">BaseAdaptDeep</span><span class="p">):</span>
734734
<span class="c1"># Write a description of the algorithm, parameters and attributes.</span>
735-
<span class="sd">&quot;&quot;&quot;</span>
735+
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
736736
<span class="sd"> CenterDomains : Centering domains</span>
737737

738738
<span class="sd"> CenterDomains learns a deep representation where the source and target domains</span>

docs/examples/Multi_fidelity.html

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -527,8 +527,8 @@
527527
</style>
528528
<section id="Multi-Fidelity">
529529
<h1>Multi-Fidelity<a class="headerlink" href="#Multi-Fidelity" title="Permalink to this headline"></a></h1>
530-
<div class="btn btn-notebook" role="button"><p><img alt="52a07bcadbe84b1ba9f4c59e21069b62" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Cc9TVY_Tl_boVzZDNisQnqe6Qx78svqe?usp=sharing">Run in Google Colab</a></p>
531-
</div><div class="btn btn-notebook" role="button"><p><img alt="517a6ae3dc404179ae304967a0784b5e" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Multi_fidelity.ipynb">View on GitHub</a></p>
530+
<div class="btn btn-notebook" role="button"><p><img alt="fe758e855f4c4b1dbec0d2a24bfbd1d8" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1Cc9TVY_Tl_boVzZDNisQnqe6Qx78svqe?usp=sharing">Run in Google Colab</a></p>
531+
</div><div class="btn btn-notebook" role="button"><p><img alt="fa66fbcf91614ae1a57ca11f12d0b398" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Multi_fidelity.ipynb">View on GitHub</a></p>
532532
</div><p>The following example is a 1D regression multi-fidelity issue. Blue points are low fidelity observations and orange points are high fidelity observations. The goal is to use both datasets to learn the task on the [0, 1] interval.</p>
533533
<p>To tackle this challenge, we use here the parameter-based method: <a class="reference external" href="#RegularTransferNN">RegularTransferNN</a></p>
534534
<div class="nbinput nblast docutils container">
@@ -638,7 +638,7 @@ <h2>Low fidelity only<a class="headerlink" href="#Low-fidelity-only" title="Perm
638638
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
639639
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
640640
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">&quot;y = f(X)&quot;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
641-
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Low Fidelity Only -- MAE = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="k">sc</span>ore, <span class="nv">fontsize</span><span class="o">=</span><span class="m">18</span><span class="o">)</span>
641+
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Low Fidelity Only -- MAE = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="k">sc</span>ore,<span class="w"> </span><span class="nv">fontsize</span><span class="o">=</span><span class="m">18</span><span class="o">)</span>
642642
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
643643
</pre></div>
644644
</div>
@@ -680,7 +680,7 @@ <h2>High fidelity only<a class="headerlink" href="#High-fidelity-only" title="Pe
680680
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
681681
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
682682
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">&quot;y = f(X)&quot;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
683-
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Low Fidelity Only -- MAE = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="k">sc</span>ore, <span class="nv">fontsize</span><span class="o">=</span><span class="m">18</span><span class="o">)</span>
683+
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Low Fidelity Only -- MAE = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="k">sc</span>ore,<span class="w"> </span><span class="nv">fontsize</span><span class="o">=</span><span class="m">18</span><span class="o">)</span>
684684
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
685685
</pre></div>
686686
</div>
@@ -728,7 +728,7 @@ <h2><a class="reference external" href="https://adapt-python.github.io/adapt/gen
728728
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">fontsize</span><span class="o">=</span><span class="mi">14</span><span class="p">)</span>
729729
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s2">&quot;X&quot;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
730730
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s2">&quot;y = f(X)&quot;</span><span class="p">,</span> <span class="n">fontsize</span><span class="o">=</span><span class="mi">16</span><span class="p">)</span>
731-
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Low Fidelity Only -- MAE = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="k">sc</span>ore, <span class="nv">fontsize</span><span class="o">=</span><span class="m">18</span><span class="o">)</span>
731+
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s2">&quot;Low Fidelity Only -- MAE = </span><span class="si">%.3f</span><span class="s2">&quot;</span><span class="o">%</span><span class="k">sc</span>ore,<span class="w"> </span><span class="nv">fontsize</span><span class="o">=</span><span class="m">18</span><span class="o">)</span>
732732
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
733733
</pre></div>
734734
</div>

docs/examples/Quick_start.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -533,7 +533,7 @@ <h1>Quick-Start<a class="headerlink" href="#Quick-Start" title="Permalink to thi
533533
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[1]:
534534
</pre></div>
535535
</div>
536-
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Import standard libraries</span>
536+
<div class="input_area highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Import standard librairies</span>
537537
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
538538
<span class="kn">from</span> <span class="nn">sklearn.linear_model</span> <span class="kn">import</span> <span class="n">LogisticRegression</span>
539539

0 commit comments

Comments
 (0)