-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchatbot.py
85 lines (74 loc) · 2.82 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Importing necessary libraries
import random
import json
import pickle
import numpy as np
import nltk
# Importing required classes and functions from NLTK
from nltk.stem import WordNetLemmatizer
# Importing the trained model from Keras
from keras.models import load_model
# Initializing the WordNet lemmatizer
lemmatizer = WordNetLemmatizer()
# Loading intents data from JSON file
intents = json.loads(open('intents.json').read())
# Loading preprocessed data from pickle files
words = pickle.load(open('words.pkl', 'rb'))
classes = pickle.load(open('classes.pkl', 'rb'))
# Loading the trained model
model = load_model('chatbot_model.h5')
# Function to preprocess the input sentence
def clean_up_sentence(sentence):
# Tokenizing the input sentence into words
sentence_words = nltk.word_tokenize(sentence)
# Lemmatizing each word to its base form
sentence_words = [lemmatizer.lemmatize(word) for word in sentence_words]
return sentence_words
# Function to create a bag of words from the input sentence
def bag_of_words(sentence):
sentence_words = clean_up_sentence(sentence)
bag = [0] * len(words)
for w in sentence_words:
for i, word in enumerate(words):
if word == w:
bag[i] = 1
return np.array(bag)
# Function to predict the class (intent) of the input sentence
def predict_class(sentence):
# Creating a bag of words for the input sentence
bow = bag_of_words(sentence)
# Predicting the class probabilities using the trained model
res = model.predict(np.array([bow]))[0]
ERROR_THRESHOLD = 0.25
# Filtering out predictions with low probabilities
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# Sorting the results by probability in descending order
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
# Creating a list of intents along with their probabilities
for r in results:
return_list.append({'intent': classes[r[0]], 'probability': str(r[1])})
return return_list
# Function to get a response based on the predicted intent
def get_response(intents_list, intents_json):
# Extracting the predicted intent
tag = intents_list[0]['intent']
# Retrieving the responses corresponding to the predicted intent
list_of_intents = intents_json['intents']
for i in list_of_intents:
if i['tag'] == tag:
# Selecting a random response from the list of responses
result = random.choice(i['responses'])
break
return result
# Main program loop
print("GO! Bot is running!")
while True:
# Getting user input
message = input("")
# Predicting the intent of the input message
ints = predict_class(message)
# Retrieving a response based on the predicted intent
res = get_response(ints, intents)
# Printing the response
print(res)