-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
132 lines (102 loc) · 4.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import string
import re
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from wordbatch_model import WordBatchModel
from preprocess_for_nn import NNPreprocessor
from nn_model import NNModel
def secure(df):
df["category_name"] = df["category_name"].fillna(value="missing").apply(str)
df["name"] = df["name"].fillna(value="missing").apply(str)
df["brand_name"] = df["brand_name"].fillna(value="missing").apply(str)
df["item_description"] = df["item_description"].fillna(value="missing").apply(str)
df["item_condition_id"] = df["item_condition_id"].fillna(value=1).apply(int)
df["shipping"] = df["shipping"].fillna(value=0).apply(int)
return df
def word_count(text):
if text == 'No description yet':
return 0
else:
return len(text.lower().split(" "))
def extract_len_feature(df):
df['desc_len'] = df['item_description'].apply(word_count)
df['name_len'] = df['name'].apply(word_count)
return df
def split_cat(text):
cats = text.split("/")
if len(cats) > 3:
cats = [cats[0], cats[1], " ".join(cats[2:])]
while len(cats) < 3:
cats.append("missing")
return tuple(cats)
def plural(x):
if len(x) > 4 and x[-1] == "s":
return x[:-1] + " plural"
else:
return x
def normalize_text(translator, x):
x = x.replace("+", " plus ").replace("&", " and ").replace("$", " dollars ")
return " ".join([plural(x) for x in re.findall(r"\w+", x.translate(translator).lower())])
def preprocess(df):
df["name_ori"] = df["name"].values
df["item_description_ori"] = df["item_description"].values
df["strange_char"] = df["name"].apply(lambda x: max([ord(c) for c in list(x)]) > 1000)
df["item_description"] = df["item_description"].replace('No description yet', "missing2")
translator = str.maketrans(string.punctuation, ' ' * len(string.punctuation))
df["name"] = df["name"].apply(lambda x: normalize_text(translator, x))
df["item_description"] = df["item_description"].apply(lambda x: normalize_text(translator, x))
return df
def load_test():
for df in pd.read_csv('../input/test.tsv', sep='\t', chunksize=350000):
yield df
if __name__ == "__main__":
np.random.seed(0)
batch_size = 1536
epochs = 3
train_df = pd.read_table('../input/train.tsv', sep='\t')
train_df = secure(train_df)
train_df = extract_len_feature(train_df)
train_df['subcat_0'], train_df['subcat_1'], train_df['subcat_2'] = zip(*train_df['category_name'].apply(split_cat))
train_df["target"] = np.log1p(train_df.price)
train_df = preprocess(train_df)
train_df, val_df = train_test_split(train_df, random_state=123, train_size=0.99)
wbm = WordBatchModel()
wbm.train(train_df)
predsFM_val = wbm.predict(val_df)
nnp = NNPreprocessor()
train_df, WC = nnp.fit_transform(train_df)
val_df = nnp.transform(val_df)
nnm = NNModel(train_df=train_df, word_count=WC, batch_size=batch_size, epochs=epochs)
X_train = nnm.get_nn_data(train_df)
Y_train = train_df.target.values.reshape(-1, 1)
X_val = nnm.get_nn_data(val_df)
Y_val = val_df.target.values.ravel()
rnn_model = nnm.new_rnn_model(X_train)
rnn_model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_val, Y_val), verbose=1)
Y_val_preds_rnn = rnn_model.predict(X_val, batch_size=batch_size).ravel()
rmsle = lambda y, y_pred: np.sqrt(np.mean(np.square(y_pred - y)))
print("Evaluating the model on validation data...")
print(" RMSLE error:", rmsle(Y_val, predsFM_val))
print(" RMSLE error:", rmsle(Y_val, Y_val_preds_rnn))
print(" RMSLE error:", rmsle(Y_val, 0.4 * Y_val_preds_rnn + 0.6 * predsFM_val))
# batch prediction in order to avoid memory errors
test_ids = np.array([], dtype=np.int32)
preds = np.array([], dtype=np.float32)
for test_df in load_test():
test_df = secure(test_df)
test_df = extract_len_feature(test_df)
test_df['subcat_0'], test_df['subcat_1'], test_df['subcat_2'] = zip(*test_df['category_name'].apply(split_cat))
test_df = preprocess(test_df)
predsFM = wbm.predict(test_df)
test_df = nnp.transform(test_df)
X_test = nnm.get_nn_data(test_df)
rnn_preds = rnn_model.predict(X_test, batch_size=batch_size, verbose=1).ravel()
preds = np.append(preds, 0.4 * rnn_preds + 0.6 * predsFM)
test_ids = np.append(test_ids, test_df["test_id"])
preds[preds < 0] = 0
submission = pd.DataFrame({
"test_id": test_ids,
"price": np.expm1(preds),
})
submission.to_csv("submission.csv", index=False)