-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_attention_skipgram.py
245 lines (207 loc) · 6.92 KB
/
train_attention_skipgram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from source.attention_skipgram import AttentionSkipGram
from source.utils import MultipleOptimizer
import argparse
import numpy as np
import os.path
from tqdm import tqdm
from collections import Counter
import json
from source.datasets import Vocabulary
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from itertools import chain
parser = argparse.ArgumentParser(
description='Script to train a AttentionSkipGram model'
)
parser.add_argument(
'--data', type=str, required=False,
help="path to data"
)
parser.add_argument(
'--context_voc', type=str, required=True,
help=("path to context voc for DefinitionModelingModel is necessary to "
"save pretrained attention module, particulary embedding matrix")
)
parser.add_argument(
'--prepared', dest='prepared', action="store_true",
help='whether to prepare data or use already prepared'
)
parser.add_argument(
"--window", type=int, required=True,
help="window for AttentionSkipGram model"
)
parser.add_argument(
"--random_seed", type=int, required=True,
help="random seed for training"
)
parser.add_argument(
"--sparse", dest="sparse", action="store_true",
help="whether to use sparse embeddings or not"
)
parser.add_argument(
"--vec_dim", type=int, required=True,
help="vector dim to train"
)
parser.add_argument(
"--attn_hid", type=int, required=True,
help="hidden size in attention module"
)
parser.add_argument(
"--attn_dropout", type=float, required=True,
help="dropout prob in attention module"
)
parser.add_argument(
"--lr", type=float, required=True,
help="initial lr to use"
)
parser.add_argument(
"--batch_size", type=int, required=True,
help="batch size to use"
)
parser.add_argument(
"--num_epochs", type=int, required=True,
help="number of epochs to train"
)
parser.add_argument(
"--exp_dir", type=str, required=True,
help="where to save weights, prepared data and logs"
)
args = vars(parser.parse_args())
logfile = open(args["exp_dir"] + "training_log", "a")
context_voc = Vocabulary()
context_voc.load(args["context_voc"])
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
np.random.seed(args["random_seed"])
torch.manual_seed(args["random_seed"])
if torch.cuda.is_available():
torch.cuda.manual_seed(args["random_seed"])
if args["prepared"]:
assert os.path.isfile(args["exp_dir"] + "data.npz"), ("prepared data "
"does not exist")
assert os.path.isfile(args["exp_dir"] + "voc.json"), ("prepared voc "
"does not exist")
tqdm.write("Loading data!", file=logfile)
logfile.flush()
data = np.load(args["exp_dir"] + "data.npz")
words_idx = data['words_idx']
cnt_idx = data['cnt_idx']
freqs = data['freqs']
with open(args["exp_dir"] + "voc.json", 'r') as f:
voc = json.load(f)
word2id = voc['word2id']
id2word = voc['id2word']
else:
assert args["data"] is not None, "--prepared False, provide --data"
tqdm.write("Preparing data!", file=logfile)
logfile.flush()
with open(args["data"], 'r') as f:
data = f.read()
data = data.lower().split()
counter = Counter(data)
word2id = {}
id2word = {}
i = 0
words = []
counts = []
for w, c in counter.most_common():
words.append(w)
counts.append(c)
word2id[words[-1]] = i
id2word[i] = w
i += 1
freqs = np.array(counts)
freqs = freqs / freqs.sum()
freqs = np.sqrt(freqs)
freqs = freqs / freqs.sum()
data = list(map(lambda w: word2id[w], data))
words_idx = np.zeros(len(data) - 2 * args["window"], dtype=np.int)
cnt_idx = np.zeros(
(len(data) - 2 * args["window"], 2 * args["window"]), dtype=np.int
)
for i in tqdm(range(args["window"], len(data) - args["window"]), file=logfile):
words_idx[i - args["window"]] = data[i]
cnt_idx[i - args["window"]] = np.array(
data[i - args["window"]:i] + data[i + 1:i + args["window"] + 1]
)
np.savez(
args["exp_dir"] + "data",
words_idx=words_idx,
cnt_idx=cnt_idx,
freqs=freqs
)
with open(args["exp_dir"] + "voc.json", 'w') as f:
json.dump({'word2id': word2id, 'id2word': id2word}, f)
tqdm.write("Data prepared and saved!", file=logfile)
logfile.flush()
def generate_neg(batch_size, negative=10):
return np.random.choice(freqs.size, size=(batch_size, negative), p=freqs)
def generate_batch(batch_size=128):
shuffle = np.random.permutation(words_idx.shape[0])
words_idx_shuffled = words_idx[shuffle]
cnt_idx_shuffled = cnt_idx[shuffle]
for i in tqdm(range(0, words_idx.shape[0], batch_size), file=logfile):
start = i
end = min(i + batch_size, words_idx.shape[0])
words = words_idx_shuffled[start:end]
context = cnt_idx_shuffled[start:end]
neg = generate_neg(end - start)
context = torch.from_numpy(context).to(device)
words = torch.from_numpy(words).to(device)
neg = torch.from_numpy(neg).to(device)
yield words, context, neg
del words_idx_shuffled
del cnt_idx_shuffled
tqdm.write("Initialising model!", file=logfile)
logfile.flush()
model = AttentionSkipGram(
n_attn_tokens=len(word2id),
n_attn_embsize=args["vec_dim"],
n_attn_hid=args["attn_hid"],
attn_dropout=args["attn_dropout"],
sparse=args["sparse"]
).to(device)
if args["sparse"]:
optimizer = MultipleOptimizer(
optim.SparseAdam(chain(
model.emb0_lookup.embs.parameters(),
model.emb1_lookup.parameters()
), lr=args["lr"]),
optim.Adam(chain(
model.emb0_lookup.ann.parameters(),
model.emb0_lookup.a_linear.parameters()
), lr=args["lr"])
)
else:
optimizer = optim.Adam(model.parameters(), lr=args["lr"])
tqdm.write("Start training!", file=logfile)
logfile.flush()
model.train()
for _ in range(args["num_epochs"]):
for w, c, n in generate_batch(batch_size=args["batch_size"]):
optimizer.zero_grad()
loss = model(w, c, n)
loss.backward()
optimizer.step()
tqdm.write("Training ended! Saving model!", file=logfile)
logfile.flush()
state_dict = model.emb0_lookup.state_dict()
initrange = 0.5 / args["vec_dim"]
embs_weights = np.random.uniform(
low=-initrange,
high=initrange,
size=(len(context_voc.tok2id), args["vec_dim"]),
).astype(np.float32)
for word in context_voc.tok2id.keys():
if word in word2id:
new_id = context_voc.tok2id[word]
old_id = word2id[word]
embs_weights[new_id] = state_dict["embs.weight"][old_id].cpu().numpy()
state_dict["embs.weight"] = torch.from_numpy(embs_weights).to(device)
torch.save(
{"state_dict": state_dict},
args["exp_dir"] + "weights.pth"
)
with open(args["exp_dir"] + "params.json", "w") as outfile:
json.dump(args, outfile, indent=4)