Skip to content

Latest commit

 

History

History
38 lines (35 loc) · 2.15 KB

check_gpu_docker.md

File metadata and controls

38 lines (35 loc) · 2.15 KB

Ensuring your system's all ready:

Per Google's Tensorflow Docker documentation, check that your NVidia GPU device is present:

> lspci | grep -i nvidia
01:00.0 VGA compatible controller: NVIDIA Corporation TU104 [GeForce RTX 2080 SUPER] (rev a1)
01:00.1 Audio device: NVIDIA Corporation TU104 HD Audio Controller (rev a1)
01:00.2 USB controller: NVIDIA Corporation TU104 USB 3.1 Host Controller (rev a1)
01:00.3 Serial bus controller [0c80]: NVIDIA Corporation TU104 USB Type-C UCSI Controller (rev a1)

Then verify your nvidia-docker installation, e.g.:

> docker run --gpus all --rm nvidia/cuda nvidia-smi
Sun Jun  5 16:31:20 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.103.01   Driver Version: 470.103.01   CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| 18%   26C    P8     4W / 250W |    134MiB /  7982MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

If any trouble with those, that Google Tensorflow Docker documentation is really helpful.