-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathquantileci.py
263 lines (228 loc) · 9.01 KB
/
quantileci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from scipy.optimize import root, brentq
from scipy.interpolate import interp1d
__all__ = ['estimate_quantile']
def estimate_quantile(data, q, alpha=0.05, method='exact', weights=None, nsamples=10000):
"""Calculate lower and upper CI of a given quantile using exact method,
based on beta distribution
Alan D. Hutson (1999) Calculating nonparametric confidence intervals
for quantiles using fractional order statistics, Journal of
Applied Statistics, 26:3, 343-353, DOI: 10.1080/02664769922458
Wei L, Wang D, Hutson AD. An Investigation of Quantile Function
Estimators Relative to Quantile Confidence Interval Coverage.
Commun Stat Theory Methods. 2015;44(10):2107-2135.
doi: 10.1080/03610926.2013.775304. PMID: 26924881;
PMCID: PMC4768491.
Parameters
----------
data : np.array
Data
q : float, [0, 1]
Quantile
alpha : float
Desired significance level
method :str
"exact" or "approximate"
Returns
-------
Lower and upper bound of the quantile
"""
def _est_bound(n, q, b):
"""Function to estimate the upper and lower bound
b is targeted lower or upper CI bound"""
return brentq(lambda x: stats.beta.cdf(q, (n+1)*x, (n+1)*(1-x)) - b, 1e-8, 1-1e-8)
if not weights is None:
if method != 'bootstrap':
print('Using bootstrap method to accomodate weights!')
method = 'bootstrap'
n = len(data)
if q > (1 - 1e-7):
q = 1 - 1e-7
if q < 1e-7:
q = 1e-7
if method == 'exact':
lb = _est_bound(n, q, 1 - (alpha/2))
ub = _est_bound(n, q, alpha/2)
estx, lx, ux = np.quantile(data, [q, lb, ub], interpolation='linear')
elif method == 'approximate':
pn = (n+1) * q
qn = (n+1) * (1-q)
lb = stats.beta.ppf(alpha/2, pn, qn)
ub = stats.beta.ppf(1 - alpha/2, pn, qn)
estx, lx, ux = np.quantile(data, [q, lb, ub], interpolation='linear')
elif method == 'bootstrap':
bsamp = np.zeros(nsamples)
ndata = len(data)
if weights is None:
for i in range(nsamples):
bsamp[i] = np.quantile(np.random.choice(data, size=ndata, replace=True), q)
estx = np.quantile(data, q, interpolation='linear')
else:
w = weights / weights.sum()
for i in range(nsamples):
rind = np.random.choice(np.arange(ndata), size=ndata, replace=True)
bsamp[i] = weighted_quantile(data[rind], q, weights=w[rind])
estx = weighted_quantile(data, q, weights=w)
lx, ux = np.quantile(bsamp, [alpha/2, 1 - alpha/2])
lb, ub = np.nan, np.nan
return estx, lx, ux, q, lb, ub
def ecdf(x, weights=None, reverse=True, make_step=False):
"""
For reverse = True:
Y is proportion of samples >= X or Pr(X>=x)
For reverse = False:
Y is proportion of samples <= X or Pr(X<=x)
"""
if weights is None:
weights = np.zeros(len(x))
x = np.array(x, copy=True)
x.sort()
if reverse:
x = x[::-1]
nobs = len(x)
y = np.linspace(1./nobs, 1, nobs)
if make_step:
x = np.concatenate(([x[0]], np.repeat(x[1:].ravel(), 2)))
y = np.repeat(y.ravel(), 2)[:-1]
return x, y
def weighted_quantile(data, q, inverse=False, weights=None, reverse=False):
"""
q : quantile in [0-1]!
weights
inverse : bool
If True then q is treated as a new data point and its corresponding quantile will be returned.
https://stackoverflow.com/questions/21844024/weighted-percentile-using-numpy
"""
if weights is None:
weights = np.ones(len(data))
ix = np.argsort(data)
if reverse:
ix = ix[::-1]
data = data[ix] # sort data
weights = weights[ix] # sort weights
cdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights) # 'like' a CDF function
if not inverse:
out = np.interp(q, cdf, data)
else:
out = np.interp(q, data, cdf, left=np.min(cdf)/2, right=1 - np.min(cdf)/2)
return out
def plot_recdfs(data, quantiles=None, keys=None, logscale=True, make_step=False, alpha=0.05, method='exact', palette=None):
"""
SLOW for large datasets because it computes the CI at every data point.
Could easily speed this up if needed.
"""
if keys is None:
keys = data.keys()
if palette is None:
palette = mpl.cm.Set3.colors
figh = plt.figure(figsize=(9, 7))
axh = figh.add_axes([0.1, 0.1, 0.7, 0.8], xscale='log' if logscale else 'linear')
for k, color in zip(keys, palette):
dat = data[k]
dat = dat[~np.isnan(dat)]
x, y = ecdf(dat)
if quantiles is None:
qvec = y
else:
qvec = quantiles
n = len(qvec)
estx = np.zeros(n)
lq = np.zeros(n)
uq = np.zeros(n)
for yi, yy in enumerate(qvec):
estx[yi], lx, ux, estq, lq[yi], uq[yi] = estimate_quantile(dat, 1 - yy, alpha=alpha, method=method)
plt.fill_between(estx, y1=1 - lq, y2=1 - uq, color=color, alpha=0.3)
plt.plot(x, y, '-', color=color, label=k)
plt.ylabel('Pr(X\u2265x)')
plt.ylim((0, 1))
plt.yticks(np.arange(11)/10)
plt.legend(loc='upper left', bbox_to_anchor=[1, 1])
return figh
def test_plot(n1=20, n2=10000):
data = {'A1':np.random.normal(40, 5, size=n1),
'A2':np.random.normal(40, 5, size=n2),
'B1':np.random.lognormal(0.5, 0, size=n1),
'B2':np.random.lognormal(0.5, 0, size=n2)}
"""Plot AVG of 10 ECDFs based on n1 and see if it looks like n2 ECDF to check for bias"""
xmat = []
for i in range(5000):
x, y = ecdf(np.random.normal(40, 5, size=n1))
xmat.append(x[:,None])
x1 = np.mean(np.concatenate(xmat, axis=1), axis=1)
plt.figure(figsize=(10,10))
plt.plot(x1, y)
x2, y2 = ecdf(np.random.normal(40, 5, size=n2))
plt.plot(x2, y2, '-r')
plt.grid('both')
plt.yticks(np.arange(21)/20)
y2i = np.interp(x1, x2[::-1], y2[::-1])
plt.figure(figsize=(10,10))
plt.plot(x1, y2i - y, '-r')
figh = plot_recdfs(data, keys=['A1', 'A2'], logscale=False)
plot_recdfs(data, keys=['B1', 'B2'], logscale=False)
def test():
# parama, paramb = 0.5, 0
# dist = stats.lognorm
parama, paramb = 40, 5
dist = stats.norm
frozen = dist.freeze(parama, paramb)
nsamp = 40
ssamps = 50000
bootsamps = 10000
qvec = np.linspace(0.02, 0.2, 10)
alpha = 0.05
res = []
for q in qvec:
"""Simulated CI"""
qsamps = np.zeros(ssamps)
for i in range(ssamps):
# qsamps[i] = np.quantile(pop[np.random.permutation(npop)[:nsamp]], q)
qsamps[i] = np.quantile(frozen.rvs(nsamp), q)
sest, slci, suci = np.quantile(qsamps, [0.5, alpha/2, 1-alpha/2])
res.append({'quantile':q,
'method':'simulated',
'est':sest,
'lci':slci,
'uci':suci})
for repi in range(1000):
data = frozen.rvs(size=nsamp)
"""Bootstrap CI"""
"""
best, blci, buci, qest, lb, ub = estimate_quantile(data, q, alpha=0.05, method='bootstrap', nsamples=bootsamps)
res.append({'quantile':q,
'method':'bootstrap',
'est':best,
'lci':blci,
'uci':buci})
"""
"""Exact CI"""
#lbq, ubq = quantile_ci(q, nsamp, alpha, method='exact')
#elb, eub = frozen.ppf([lbq, ubq])
eest, elci, euci, qest, lb, ub = estimate_quantile(data, q, alpha=0.05, method='exact')
res.append({'quantile':q,
'method':'exact',
'est':eest,
'lci':elci,
'uci':euci})
"""Approximate CI"""
#albq, aubq = quantile_ci(q, nsamp, alpha, method='approximate')
#alb, aub = frozen.ppf([albq, aubq])
"""print(f'Sampled: [{slb:1.2f}, {sub:1.2f}]')
print(f'Bootstrap: [{blb:1.2f}, {bub:1.2f}]')
print(f'Exact: [{elb:1.2f}, {eub:1.2f}]')
print(f'Exact est: [{lci:1.2f}, {uci:1.2f}]')
print(f'Approx: [{alb:1.2f}, {aub:1.2f}]')"""
resdf = pd.DataFrame(res)
summ = resdf.groupby(['method', 'quantile']).agg(np.mean).reset_index()
plt.figure(figsize=(10,10))
for method, color in zip(['simulated', 'exact'], ['crimson', 'dodgerblue', 'green']):
tmp = summ.loc[summ['method'] == method]
plt.plot(tmp['quantile'], tmp['est'], '-', color=color, label=method)
plt.plot(tmp['quantile'], tmp['lci'], '--', color=color)
plt.plot(tmp['quantile'], tmp['uci'], '--', color=color)
plt.xlabel('Quantile')
plt.ylabel('X (normally distributed random variable)')
plt.legend(loc='lower right')