-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathStrict.agda
37 lines (25 loc) · 1.05 KB
/
Strict.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
------------------------------------------------------------------------
-- The Agda standard library
--
-- Definitions for types of functions.
------------------------------------------------------------------------
-- The contents of this file should usually be accessed from `Function`.
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Core using (Rel)
module Function.Definitions.Strict {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) where
open import Data.Product.Base using (∃)
open import Level using (Level)
private
variable
b : Level
B : Set b
------------------------------------------------------------------------
-- Strict definitions
-- These are often easier to use once but much harder to compose and
-- reason about.
StrictlySurjective : (B → A) → Set _
StrictlySurjective f = ∀ y → ∃ λ x → f x ≈ y
StrictlyInverseˡ : (B → A) → (A → B) → Set _
StrictlyInverseˡ f g = ∀ y → f (g y) ≈ y
StrictlyInverseʳ : (A → B) → (B → A) → Set _
StrictlyInverseʳ g f = StrictlyInverseˡ f g