-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathStructures.agda
1042 lines (807 loc) · 29 KB
/
Structures.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some algebraic structures (not packed up with sets, operations, etc.)
------------------------------------------------------------------------
-- The contents of this module should be accessed via `Algebra`, unless
-- you want to parameterise it via the equality relation.
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Core using (Rel)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
module Algebra.Structures
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality relation
where
-- The file is divided into sections depending on the arities of the
-- components of the algebraic structure.
open import Algebra.Core using (Op₁; Op₂)
open import Algebra.Definitions _≈_
import Algebra.Consequences.Setoid as Consequences
open import Data.Product.Base using (_,_; proj₁; proj₂)
open import Level using (_⊔_)
------------------------------------------------------------------------
-- Structures with 1 unary operation & 1 element
------------------------------------------------------------------------
record IsSuccessorSet (suc# : Op₁ A) (zero# : A) : Set (a ⊔ ℓ) where
field
isEquivalence : IsEquivalence _≈_
suc#-cong : Congruent₁ suc#
open IsEquivalence isEquivalence public
setoid : Setoid a ℓ
setoid = record { isEquivalence = isEquivalence }
------------------------------------------------------------------------
-- Structures with 1 binary operation
------------------------------------------------------------------------
record IsMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isEquivalence : IsEquivalence _≈_
∙-cong : Congruent₂ ∙
open IsEquivalence isEquivalence public
setoid : Setoid a ℓ
setoid = record { isEquivalence = isEquivalence }
{-
∙-congˡ : LeftCongruent ∙
∙-congˡ y≈z = ∙-cong refl y≈z
∙-congʳ : RightCongruent ∙
∙-congʳ y≈z = ∙-cong y≈z refl
-}
open Consequences.Congruence setoid ∙-cong public
record IsCommutativeMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
comm : Commutative ∙
open IsMagma isMagma public
record IsIdempotentMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
idem : Idempotent ∙
open IsMagma isMagma public
record IsAlternativeMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
alter : Alternative ∙
open IsMagma isMagma public
alternativeˡ : LeftAlternative ∙
alternativeˡ = proj₁ alter
alternativeʳ : RightAlternative ∙
alternativeʳ = proj₂ alter
record IsFlexibleMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
flex : Flexible ∙
open IsMagma isMagma public
record IsMedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
medial : Medial ∙
open IsMagma isMagma public
record IsSemimedialMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
semiMedial : Semimedial ∙
open IsMagma isMagma public
semimedialˡ : LeftSemimedial ∙
semimedialˡ = proj₁ semiMedial
semimedialʳ : RightSemimedial ∙
semimedialʳ = proj₂ semiMedial
record IsSelectiveMagma (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
sel : Selective ∙
open IsMagma isMagma public
record IsSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
assoc : Associative ∙
open IsMagma isMagma public
record IsBand (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
idem : Idempotent ∙
open IsSemigroup isSemigroup public
record IsCommutativeSemigroup (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
comm : Commutative ∙
open IsSemigroup isSemigroup public
isCommutativeMagma : IsCommutativeMagma ∙
isCommutativeMagma = record
{ isMagma = isMagma
; comm = comm
}
record IsCommutativeBand (∙ : Op₂ A) : Set (a ⊔ ℓ) where
field
isBand : IsBand ∙
comm : Commutative ∙
open IsBand isBand public
isCommutativeSemigroup : IsCommutativeSemigroup ∙
isCommutativeSemigroup = record { isSemigroup = isSemigroup ; comm = comm }
open IsCommutativeSemigroup isCommutativeSemigroup public
using (isCommutativeMagma)
------------------------------------------------------------------------
-- Structures with 1 binary operation & 1 element
------------------------------------------------------------------------
record IsUnitalMagma (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
identity : Identity ε ∙
open IsMagma isMagma public
identityˡ : LeftIdentity ε ∙
identityˡ = proj₁ identity
identityʳ : RightIdentity ε ∙
identityʳ = proj₂ identity
record IsMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isSemigroup : IsSemigroup ∙
identity : Identity ε ∙
open IsSemigroup isSemigroup public
identityˡ : LeftIdentity ε ∙
identityˡ = proj₁ identity
identityʳ : RightIdentity ε ∙
identityʳ = proj₂ identity
isUnitalMagma : IsUnitalMagma ∙ ε
isUnitalMagma = record
{ isMagma = isMagma
; identity = identity
}
record IsCommutativeMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMonoid : IsMonoid ∙ ε
comm : Commutative ∙
open IsMonoid isMonoid public
isCommutativeSemigroup : IsCommutativeSemigroup ∙
isCommutativeSemigroup = record
{ isSemigroup = isSemigroup
; comm = comm
}
open IsCommutativeSemigroup isCommutativeSemigroup public
using (isCommutativeMagma)
record IsIdempotentMonoid (∙ : Op₂ A) (ε : A) : Set (a ⊔ ℓ) where
field
isMonoid : IsMonoid ∙ ε
idem : Idempotent ∙
open IsMonoid isMonoid public
isBand : IsBand ∙
isBand = record { isSemigroup = isSemigroup ; idem = idem }
record IsIdempotentCommutativeMonoid (∙ : Op₂ A)
(ε : A) : Set (a ⊔ ℓ) where
field
isCommutativeMonoid : IsCommutativeMonoid ∙ ε
idem : Idempotent ∙
open IsCommutativeMonoid isCommutativeMonoid public
isIdempotentMonoid : IsIdempotentMonoid ∙ ε
isIdempotentMonoid = record { isMonoid = isMonoid ; idem = idem }
open IsIdempotentMonoid isIdempotentMonoid public
using (isBand)
isCommutativeBand : IsCommutativeBand ∙
isCommutativeBand = record { isBand = isBand ; comm = comm }
------------------------------------------------------------------------
-- Structures with 1 binary operation, 1 unary operation & 1 element
------------------------------------------------------------------------
record IsInvertibleMagma (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma _∙_
inverse : Inverse ε _⁻¹ _∙_
⁻¹-cong : Congruent₁ _⁻¹
open IsMagma isMagma public
inverseˡ : LeftInverse ε _⁻¹ _∙_
inverseˡ = proj₁ inverse
inverseʳ : RightInverse ε _⁻¹ _∙_
inverseʳ = proj₂ inverse
record IsInvertibleUnitalMagma (_∙_ : Op₂ A) (ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
field
isInvertibleMagma : IsInvertibleMagma _∙_ ε ⁻¹
identity : Identity ε _∙_
open IsInvertibleMagma isInvertibleMagma public
identityˡ : LeftIdentity ε _∙_
identityˡ = proj₁ identity
identityʳ : RightIdentity ε _∙_
identityʳ = proj₂ identity
isUnitalMagma : IsUnitalMagma _∙_ ε
isUnitalMagma = record
{ isMagma = isMagma
; identity = identity
}
record IsGroup (_∙_ : Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
field
isMonoid : IsMonoid _∙_ ε
inverse : Inverse ε _⁻¹ _∙_
⁻¹-cong : Congruent₁ _⁻¹
open IsMonoid isMonoid public
infixr 6 _\\_
_\\_ : Op₂ A
x \\ y = (x ⁻¹) ∙ y
infixl 6 _//_
_//_ : Op₂ A
x // y = x ∙ (y ⁻¹)
-- Deprecated.
infixl 6 _-_
_-_ : Op₂ A
_-_ = _//_
{-# WARNING_ON_USAGE _-_
"Warning: _-_ was deprecated in v2.1.
Please use _//_ instead. "
#-}
inverseˡ : LeftInverse ε _⁻¹ _∙_
inverseˡ = proj₁ inverse
inverseʳ : RightInverse ε _⁻¹ _∙_
inverseʳ = proj₂ inverse
uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹)
uniqueˡ-⁻¹ = Consequences.assoc∧id∧invʳ⇒invˡ-unique
setoid ∙-cong assoc identity inverseʳ
uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹)
uniqueʳ-⁻¹ = Consequences.assoc∧id∧invˡ⇒invʳ-unique
setoid ∙-cong assoc identity inverseˡ
isInvertibleMagma : IsInvertibleMagma _∙_ ε _⁻¹
isInvertibleMagma = record
{ isMagma = isMagma
; inverse = inverse
; ⁻¹-cong = ⁻¹-cong
}
isInvertibleUnitalMagma : IsInvertibleUnitalMagma _∙_ ε _⁻¹
isInvertibleUnitalMagma = record
{ isInvertibleMagma = isInvertibleMagma
; identity = identity
}
record IsAbelianGroup (∙ : Op₂ A)
(ε : A) (⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
field
isGroup : IsGroup ∙ ε ⁻¹
comm : Commutative ∙
open IsGroup isGroup public renaming (_//_ to _-_) hiding (_\\_; _-_)
isCommutativeMonoid : IsCommutativeMonoid ∙ ε
isCommutativeMonoid = record
{ isMonoid = isMonoid
; comm = comm
}
open IsCommutativeMonoid isCommutativeMonoid public
using (isCommutativeMagma; isCommutativeSemigroup)
------------------------------------------------------------------------
-- Structures with 2 binary operations & 1 element
------------------------------------------------------------------------
record IsNearSemiring (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where
field
+-isMonoid : IsMonoid + 0#
*-cong : Congruent₂ *
*-assoc : Associative *
distribʳ : * DistributesOverʳ +
zeroˡ : LeftZero 0# *
open IsMonoid +-isMonoid public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; isMagma to +-isMagma
; isUnitalMagma to +-isUnitalMagma
; isSemigroup to +-isSemigroup
)
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-isSemigroup : IsSemigroup *
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
open IsMagma *-isMagma public
using ()
renaming
( ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
)
record IsSemiringWithoutOne (+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where
field
+-isCommutativeMonoid : IsCommutativeMonoid + 0#
*-cong : Congruent₂ *
*-assoc : Associative *
distrib : * DistributesOver +
zero : Zero 0# *
open IsCommutativeMonoid +-isCommutativeMonoid public
using (setoid; isEquivalence)
renaming
( ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; assoc to +-assoc
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; comm to +-comm
; isMonoid to +-isMonoid
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeSemigroup to +-isCommutativeSemigroup
)
open IsEquivalence isEquivalence public
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-isSemigroup : IsSemigroup *
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
open IsMagma *-isMagma public
using ()
renaming
( ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
)
distribˡ : * DistributesOverˡ +
distribˡ = proj₁ distrib
distribʳ : * DistributesOverʳ +
distribʳ = proj₂ distrib
zeroˡ : LeftZero 0# *
zeroˡ = proj₁ zero
zeroʳ : RightZero 0# *
zeroʳ = proj₂ zero
isNearSemiring : IsNearSemiring + * 0#
isNearSemiring = record
{ +-isMonoid = +-isMonoid
; *-cong = *-cong
; *-assoc = *-assoc
; distribʳ = proj₂ distrib
; zeroˡ = zeroˡ
}
record IsCommutativeSemiringWithoutOne
(+ * : Op₂ A) (0# : A) : Set (a ⊔ ℓ) where
field
isSemiringWithoutOne : IsSemiringWithoutOne + * 0#
*-comm : Commutative *
open IsSemiringWithoutOne isSemiringWithoutOne public
*-isCommutativeSemigroup : IsCommutativeSemigroup *
*-isCommutativeSemigroup = record
{ isSemigroup = *-isSemigroup
; comm = *-comm
}
open IsCommutativeSemigroup *-isCommutativeSemigroup public
using () renaming (isCommutativeMagma to *-isCommutativeMagma)
------------------------------------------------------------------------
-- Structures with 2 binary operations & 2 elements
------------------------------------------------------------------------
record IsSemiringWithoutAnnihilatingZero (+ * : Op₂ A)
(0# 1# : A) : Set (a ⊔ ℓ) where
field
-- Note that these structures do have an additive unit, but this
-- unit does not necessarily annihilate multiplication.
+-isCommutativeMonoid : IsCommutativeMonoid + 0#
*-cong : Congruent₂ *
*-assoc : Associative *
*-identity : Identity 1# *
distrib : * DistributesOver +
distribˡ : * DistributesOverˡ +
distribˡ = proj₁ distrib
distribʳ : * DistributesOverʳ +
distribʳ = proj₂ distrib
open IsCommutativeMonoid +-isCommutativeMonoid public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeSemigroup to +-isCommutativeSemigroup
)
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-isSemigroup : IsSemigroup *
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-isMonoid : IsMonoid * 1#
*-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
open IsMonoid *-isMonoid public
using ()
renaming
( ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
; identityˡ to *-identityˡ
; identityʳ to *-identityʳ
)
record IsSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isSemiringWithoutAnnihilatingZero :
IsSemiringWithoutAnnihilatingZero + * 0# 1#
zero : Zero 0# *
open IsSemiringWithoutAnnihilatingZero
isSemiringWithoutAnnihilatingZero public
isSemiringWithoutOne : IsSemiringWithoutOne + * 0#
isSemiringWithoutOne = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-cong = *-cong
; *-assoc = *-assoc
; distrib = distrib
; zero = zero
}
open IsSemiringWithoutOne isSemiringWithoutOne public
using
( isNearSemiring
; zeroˡ
; zeroʳ
)
record IsCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isSemiring : IsSemiring + * 0# 1#
*-comm : Commutative *
open IsSemiring isSemiring public
isCommutativeSemiringWithoutOne :
IsCommutativeSemiringWithoutOne + * 0#
isCommutativeSemiringWithoutOne = record
{ isSemiringWithoutOne = isSemiringWithoutOne
; *-comm = *-comm
}
open IsCommutativeSemiringWithoutOne isCommutativeSemiringWithoutOne public
using
( *-isCommutativeMagma
; *-isCommutativeSemigroup
)
*-isCommutativeMonoid : IsCommutativeMonoid * 1#
*-isCommutativeMonoid = record
{ isMonoid = *-isMonoid
; comm = *-comm
}
record IsCancellativeCommutativeSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isCommutativeSemiring : IsCommutativeSemiring + * 0# 1#
*-cancelˡ-nonZero : AlmostLeftCancellative 0# *
open IsCommutativeSemiring isCommutativeSemiring public
*-cancelʳ-nonZero : AlmostRightCancellative 0# *
*-cancelʳ-nonZero = Consequences.comm∧almostCancelˡ⇒almostCancelʳ setoid
*-comm *-cancelˡ-nonZero
record IsIdempotentSemiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isSemiring : IsSemiring + * 0# 1#
+-idem : Idempotent +
open IsSemiring isSemiring public
+-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid + 0#
+-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = +-isCommutativeMonoid
; idem = +-idem
}
open IsIdempotentCommutativeMonoid +-isIdempotentCommutativeMonoid public
using ()
renaming ( isCommutativeBand to +-isCommutativeBand
; isBand to +-isBand
; isIdempotentMonoid to +-isIdempotentMonoid
)
record IsKleeneAlgebra (+ * : Op₂ A) (⋆ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isIdempotentSemiring : IsIdempotentSemiring + * 0# 1#
starExpansive : StarExpansive 1# + * ⋆
starDestructive : StarDestructive + * ⋆
open IsIdempotentSemiring isIdempotentSemiring public
starExpansiveˡ : StarLeftExpansive 1# + * ⋆
starExpansiveˡ = proj₁ starExpansive
starExpansiveʳ : StarRightExpansive 1# + * ⋆
starExpansiveʳ = proj₂ starExpansive
starDestructiveˡ : StarLeftDestructive + * ⋆
starDestructiveˡ = proj₁ starDestructive
starDestructiveʳ : StarRightDestructive + * ⋆
starDestructiveʳ = proj₂ starDestructive
record IsQuasiring (+ * : Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isMonoid : IsMonoid + 0#
*-cong : Congruent₂ *
*-assoc : Associative *
*-identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *
open IsMonoid +-isMonoid public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; isMagma to +-isMagma
; isUnitalMagma to +-isUnitalMagma
; isSemigroup to +-isSemigroup
)
distribˡ : * DistributesOverˡ +
distribˡ = proj₁ distrib
distribʳ : * DistributesOverʳ +
distribʳ = proj₂ distrib
zeroˡ : LeftZero 0# *
zeroˡ = proj₁ zero
zeroʳ : RightZero 0# *
zeroʳ = proj₂ zero
identityˡ : LeftIdentity 1# *
identityˡ = proj₁ *-identity
identityʳ : RightIdentity 1# *
identityʳ = proj₂ *-identity
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-isSemigroup : IsSemigroup *
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-isMonoid : IsMonoid * 1#
*-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
open IsMonoid *-isMonoid public
using ()
renaming
( ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
; identityˡ to *-identityˡ
; identityʳ to *-identityʳ
)
------------------------------------------------------------------------
-- Structures with 2 binary operations, 1 unary operation & 1 element
------------------------------------------------------------------------
record IsRingWithoutOne (+ * : Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent₂ *
*-assoc : Associative *
distrib : * DistributesOver +
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isInvertibleMagma to +-isInvertibleMagma
; isInvertibleUnitalMagma to +-isInvertibleUnitalMagma
; isGroup to +-isGroup
)
distribˡ : * DistributesOverˡ +
distribˡ = proj₁ distrib
distribʳ : * DistributesOverʳ +
distribʳ = proj₂ distrib
zeroˡ : LeftZero 0# *
zeroˡ = Consequences.assoc∧distribʳ∧idʳ∧invʳ⇒zeˡ setoid
+-cong *-cong +-assoc distribʳ +-identityʳ -‿inverseʳ
zeroʳ : RightZero 0# *
zeroʳ = Consequences.assoc∧distribˡ∧idʳ∧invʳ⇒zeʳ setoid
+-cong *-cong +-assoc distribˡ +-identityʳ -‿inverseʳ
zero : Zero 0# *
zero = zeroˡ , zeroʳ
isNearSemiring : IsNearSemiring + * 0#
isNearSemiring = record
{ +-isMonoid = +-isMonoid
; *-cong = *-cong
; *-assoc = *-assoc
; distribʳ = distribʳ
; zeroˡ = zeroˡ
}
open IsNearSemiring isNearSemiring public
using (*-isMagma; *-isSemigroup; *-congˡ; *-congʳ)
------------------------------------------------------------------------
-- Structures with 2 binary operations, 1 unary operation & 2 elements
------------------------------------------------------------------------
record IsNonAssociativeRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent₂ *
*-identity : Identity 1# *
distrib : * DistributesOver +
zero : Zero 0# *
open IsAbelianGroup +-isAbelianGroup public
renaming
( assoc to +-assoc
; ∙-cong to +-cong
; ∙-congˡ to +-congˡ
; ∙-congʳ to +-congʳ
; identity to +-identity
; identityˡ to +-identityˡ
; identityʳ to +-identityʳ
; inverse to -‿inverse
; inverseˡ to -‿inverseˡ
; inverseʳ to -‿inverseʳ
; ⁻¹-cong to -‿cong
; comm to +-comm
; isMagma to +-isMagma
; isSemigroup to +-isSemigroup
; isMonoid to +-isMonoid
; isUnitalMagma to +-isUnitalMagma
; isCommutativeMagma to +-isCommutativeMagma
; isCommutativeMonoid to +-isCommutativeMonoid
; isCommutativeSemigroup to +-isCommutativeSemigroup
; isInvertibleMagma to +-isInvertibleMagma
; isInvertibleUnitalMagma to +-isInvertibleUnitalMagma
; isGroup to +-isGroup
)
zeroˡ : LeftZero 0# *
zeroˡ = proj₁ zero
zeroʳ : RightZero 0# *
zeroʳ = proj₂ zero
distribˡ : * DistributesOverˡ +
distribˡ = proj₁ distrib
distribʳ : * DistributesOverʳ +
distribʳ = proj₂ distrib
*-isMagma : IsMagma *
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = *-cong
}
*-identityˡ : LeftIdentity 1# *
*-identityˡ = proj₁ *-identity
*-identityʳ : RightIdentity 1# *
*-identityʳ = proj₂ *-identity
*-isUnitalMagma : IsUnitalMagma * 1#
*-isUnitalMagma = record
{ isMagma = *-isMagma
; identity = *-identity
}
open IsUnitalMagma *-isUnitalMagma public
using ()
renaming
( ∙-congˡ to *-congˡ
; ∙-congʳ to *-congʳ
)
record IsNearring (+ * : Op₂ A) (0# 1# : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where
field
isQuasiring : IsQuasiring + * 0# 1#
+-inverse : Inverse 0# _⁻¹ +
⁻¹-cong : Congruent₁ _⁻¹
open IsQuasiring isQuasiring public
+-inverseˡ : LeftInverse 0# _⁻¹ +
+-inverseˡ = proj₁ +-inverse
+-inverseʳ : RightInverse 0# _⁻¹ +
+-inverseʳ = proj₂ +-inverse
record IsRing (+ * : Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
+-isAbelianGroup : IsAbelianGroup + 0# -_
*-cong : Congruent₂ *
*-assoc : Associative *
*-identity : Identity 1# *
distrib : * DistributesOver +
isRingWithoutOne : IsRingWithoutOne + * -_ 0#
isRingWithoutOne = record
{ +-isAbelianGroup = +-isAbelianGroup
; *-cong = *-cong
; *-assoc = *-assoc
; distrib = distrib
}
open IsRingWithoutOne isRingWithoutOne public
hiding (+-isAbelianGroup; *-cong; *-assoc; distrib)
*-isMonoid : IsMonoid * 1#
*-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
open IsMonoid *-isMonoid public
using ()
renaming
( identityˡ to *-identityˡ
; identityʳ to *-identityʳ
)
isSemiringWithoutAnnihilatingZero
: IsSemiringWithoutAnnihilatingZero + * 0# 1#
isSemiringWithoutAnnihilatingZero = record
{ +-isCommutativeMonoid = +-isCommutativeMonoid
; *-cong = *-cong
; *-assoc = *-assoc
; *-identity = *-identity
; distrib = distrib
}
isSemiring : IsSemiring + * 0# 1#
isSemiring = record
{ isSemiringWithoutAnnihilatingZero =
isSemiringWithoutAnnihilatingZero
; zero = zero
}
open IsSemiring isSemiring public
using (isSemiringWithoutOne)
record IsCommutativeRing
(+ * : Op₂ A) (- : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where
field
isRing : IsRing + * - 0# 1#
*-comm : Commutative *
open IsRing isRing public
isCommutativeSemiring : IsCommutativeSemiring + * 0# 1#
isCommutativeSemiring = record
{ isSemiring = isSemiring
; *-comm = *-comm
}
open IsCommutativeSemiring isCommutativeSemiring public
using
( isCommutativeSemiringWithoutOne
; *-isCommutativeMagma
; *-isCommutativeSemigroup
; *-isCommutativeMonoid
)
------------------------------------------------------------------------
-- Structures with 3 binary operations
------------------------------------------------------------------------
record IsQuasigroup (∙ \\ // : Op₂ A) : Set (a ⊔ ℓ) where
field
isMagma : IsMagma ∙
\\-cong : Congruent₂ \\
//-cong : Congruent₂ //
leftDivides : LeftDivides ∙ \\
rightDivides : RightDivides ∙ //
open IsMagma isMagma public
\\-congˡ : LeftCongruent \\
\\-congˡ y≈z = \\-cong refl y≈z
\\-congʳ : RightCongruent \\
\\-congʳ y≈z = \\-cong y≈z refl
//-congˡ : LeftCongruent //
//-congˡ y≈z = //-cong refl y≈z
//-congʳ : RightCongruent //
//-congʳ y≈z = //-cong y≈z refl
leftDividesˡ : LeftDividesˡ ∙ \\
leftDividesˡ = proj₁ leftDivides
leftDividesʳ : LeftDividesʳ ∙ \\
leftDividesʳ = proj₂ leftDivides
rightDividesˡ : RightDividesˡ ∙ //
rightDividesˡ = proj₁ rightDivides
rightDividesʳ : RightDividesʳ ∙ //
rightDividesʳ = proj₂ rightDivides