-
Notifications
You must be signed in to change notification settings - Fork 247
/
Copy pathCore.agda
262 lines (225 loc) · 16 KB
/
Core.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
------------------------------------------------------------------------
-- The Agda standard library
--
-- Core lemmas for division and modulus operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.DivMod.Core where
open import Agda.Builtin.Nat using ()
renaming (div-helper to divₕ; mod-helper to modₕ)
open import Data.Nat.Base
open import Data.Nat.Properties
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (contradiction)
open ≤-Reasoning
-------------------------------------------------------------------------
-- Helper lemmas that have no interpretation for _%_, only for modₕ
private
mod-cong₃ : ∀ {c n a₁ a₂ b} → a₁ ≡ a₂ → modₕ c n a₁ b ≡ modₕ c n a₂ b
mod-cong₃ refl = refl
modₕ-skipTo0 : ∀ acc n a b → modₕ acc n (b + a) a ≡ modₕ (a + acc) n b 0
modₕ-skipTo0 acc n zero b = cong (λ v → modₕ acc n v 0) (+-identityʳ b)
modₕ-skipTo0 acc n (suc a) b = begin-equality
modₕ acc n (b + suc a) (suc a) ≡⟨ mod-cong₃ (+-suc b a) ⟩
modₕ acc n (suc b + a) (suc a) ≡⟨⟩
modₕ (suc acc) n (b + a) a ≡⟨ modₕ-skipTo0 (suc acc) n a b ⟩
modₕ (a + suc acc) n b 0 ≡⟨ cong (λ v → modₕ v n b 0) (+-suc a acc) ⟩
modₕ (suc a + acc) n b 0 ∎
-------------------------------------------------------------------------
-- Lemmas for modₕ that also have an interpretation for _%_
a[modₕ]1≡0 : ∀ a → modₕ 0 0 a 0 ≡ 0
a[modₕ]1≡0 zero = refl
a[modₕ]1≡0 (suc a) = a[modₕ]1≡0 a
n[modₕ]n≡0 : ∀ acc v → modₕ acc (acc + v) (suc v) v ≡ 0
n[modₕ]n≡0 acc v = modₕ-skipTo0 acc (acc + v) v 1
a[modₕ]n<n : ∀ acc d n → modₕ acc (acc + n) d n ≤ acc + n
a[modₕ]n<n acc zero n = m≤m+n acc n
a[modₕ]n<n acc (suc d) zero = a[modₕ]n<n zero d (acc + 0)
a[modₕ]n<n acc (suc d) (suc n) rewrite +-suc acc n = a[modₕ]n<n (suc acc) d n
a[modₕ]n≤a : ∀ acc a n → modₕ acc (acc + n) a n ≤ acc + a
a[modₕ]n≤a acc zero n = ≤-reflexive (sym (+-identityʳ acc))
a[modₕ]n≤a acc (suc a) (suc n) = begin
modₕ acc (acc + suc n) (suc a) (suc n) ≡⟨ cong (λ v → modₕ acc v (suc a) (suc n)) (+-suc acc n) ⟩
modₕ acc (suc acc + n) (suc a) (suc n) ≤⟨ a[modₕ]n≤a (suc acc) a n ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
a[modₕ]n≤a acc (suc a) zero = begin
modₕ acc (acc + 0) (suc a) 0 ≡⟨ cong (λ v → modₕ acc v (suc a) 0) (+-identityʳ acc) ⟩
modₕ acc acc (suc a) 0 ≤⟨ a[modₕ]n≤a 0 a acc ⟩
a ≤⟨ n≤1+n a ⟩
suc a ≤⟨ m≤n+m (suc a) acc ⟩
acc + suc a ∎
a≤n⇒a[modₕ]n≡a : ∀ acc n a b → modₕ acc n a (a + b) ≡ acc + a
a≤n⇒a[modₕ]n≡a acc n zero b = sym (+-identityʳ acc)
a≤n⇒a[modₕ]n≡a acc n (suc a) b = begin-equality
modₕ (suc acc) n a (a + b) ≡⟨ a≤n⇒a[modₕ]n≡a (suc acc) n a b ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
modₕ-idem : ∀ acc a n → modₕ 0 (acc + n) (modₕ acc (acc + n) a n) (acc + n) ≡ modₕ acc (acc + n) a n
modₕ-idem acc zero n = a≤n⇒a[modₕ]n≡a 0 (acc + n) acc n
modₕ-idem acc (suc a) zero rewrite +-identityʳ acc = modₕ-idem 0 a acc
modₕ-idem acc (suc a) (suc n) rewrite +-suc acc n = modₕ-idem (suc acc) a n
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 : ∀ acc l n → modₕ acc (acc + l) (suc n) l ≡ 0 → modₕ acc (acc + l) n l ≡ acc + l
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 acc zero zero eq rewrite +-identityʳ acc = refl
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 acc zero (suc n) eq rewrite +-identityʳ acc = a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 acc n eq
a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 acc (suc l) (suc n) eq rewrite +-suc acc l = a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 (suc acc) l n eq
k<1+a[modₕ]n⇒k≤a[modₕ]n : ∀ acc k n l → suc k ≤ modₕ acc (acc + l) (suc n) l → k ≤ modₕ acc (acc + l) n l
k<1+a[modₕ]n⇒k≤a[modₕ]n acc k zero (suc l) (s≤s leq) = leq
k<1+a[modₕ]n⇒k≤a[modₕ]n acc k (suc n) zero leq rewrite +-identityʳ acc = k<1+a[modₕ]n⇒k≤a[modₕ]n 0 k n acc leq
k<1+a[modₕ]n⇒k≤a[modₕ]n acc k (suc n) (suc l) leq rewrite +-suc acc l = k<1+a[modₕ]n⇒k≤a[modₕ]n (suc acc) k n l leq
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k : ∀ acc k n l → 0 < modₕ acc (acc + l) (suc n) l →
modₕ acc (acc + l) (suc n) l ≤ suc k → modₕ acc (acc + l) n l ≤ k
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k acc k zero (suc l) 0<mod (s≤s leq) = leq
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k acc k (suc n) zero 0<mod leq rewrite +-identityʳ acc = 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 k n acc 0<mod leq
1+a[modₕ]n≤1+k⇒a[modₕ]n≤k acc k (suc n) (suc l) 0<mod leq rewrite +-suc acc l = 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k (suc acc) k n l 0<mod leq
a+n[modₕ]n≡a[modₕ]n : ∀ acc a n → modₕ acc (acc + n) (acc + a + suc n) n ≡ modₕ acc (acc + n) a n
a+n[modₕ]n≡a[modₕ]n acc zero n rewrite +-identityʳ acc = begin-equality
modₕ acc (acc + n) (acc + suc n) n ≡⟨ mod-cong₃ (+-suc acc n) ⟩
modₕ acc (acc + n) (suc acc + n) n ≡⟨ modₕ-skipTo0 acc (acc + n) n (suc acc) ⟩
modₕ (acc + n) (acc + n) (suc acc) 0 ≡⟨⟩
modₕ 0 (acc + n) acc (acc + n) ≡⟨ a≤n⇒a[modₕ]n≡a 0 (acc + n) acc n ⟩
acc ∎
a+n[modₕ]n≡a[modₕ]n acc (suc a) zero rewrite +-identityʳ acc = begin-equality
modₕ acc acc (acc + suc a + 1) 0 ≡⟨ mod-cong₃ (+-comm (acc + suc a) 1) ⟩
modₕ acc acc (1 + (acc + suc a)) 0 ≡⟨⟩
modₕ 0 acc (acc + suc a) acc ≡⟨ mod-cong₃ (+-comm acc (suc a)) ⟩
modₕ 0 acc (suc a + acc) acc ≡⟨ mod-cong₃ (sym (+-suc a acc)) ⟩
modₕ 0 acc (a + suc acc) acc ≡⟨ a+n[modₕ]n≡a[modₕ]n 0 a acc ⟩
modₕ 0 acc a acc ∎
a+n[modₕ]n≡a[modₕ]n acc (suc a) (suc n) rewrite +-suc acc n = begin-equality
mod₁ (acc + suc a + (2 + n)) (suc n) ≡⟨ cong (λ v → mod₁ (v + suc (suc n)) (suc n)) (+-suc acc a) ⟩
mod₁ (suc acc + a + (2 + n)) (suc n) ≡⟨⟩
mod₂ (acc + a + (2 + n)) n ≡⟨ mod-cong₃ (sym (+-assoc (acc + a) 1 (suc n))) ⟩
mod₂ (acc + a + 1 + suc n) n ≡⟨ mod-cong₃ (cong (_+ suc n) (+-comm (acc + a) 1)) ⟩
mod₂ (suc acc + a + suc n) n ≡⟨ a+n[modₕ]n≡a[modₕ]n (suc acc) a n ⟩
mod₂ a n ∎
where
mod₁ = modₕ acc (suc acc + n)
mod₂ = modₕ (suc acc) (suc acc + n)
-------------------------------------------------------------------------
-- Helper lemmas that have no interpretation for `_/_`, only for `divₕ`
private
div-cong₃ : ∀ {c n a₁ a₂ b} → a₁ ≡ a₂ → divₕ c n a₁ b ≡ divₕ c n a₂ b
div-cong₃ refl = refl
acc≤divₕ[acc] : ∀ {acc} d n j → acc ≤ divₕ acc d n j
acc≤divₕ[acc] {acc} d zero j = ≤-refl
acc≤divₕ[acc] {acc} d (suc n) zero = ≤-trans (n≤1+n acc) (acc≤divₕ[acc] d n d)
acc≤divₕ[acc] {acc} d (suc n) (suc j) = acc≤divₕ[acc] d n j
pattern inj₂′ x = inj₂ (inj₁ x)
pattern inj₃ x = inj₂ (inj₂ x)
-- This hideous lemma details the conditions needed for two divisions to
-- be equal when the two offsets (i.e. the 4ᵗʰ parameters) are different.
-- It may be that this triple sum has an elegant simplification to a
-- set of inequalities involving the modulus but I can't find it.
divₕ-offsetEq : ∀ {acc₁ acc₂} d n j k → j ≤ d → k ≤ d →
(acc₁ ≡ acc₂ × j ≤ k × k < modₕ 0 d n d) ⊎
(acc₁ ≡ acc₂ × modₕ 0 d n d ≤ j × j ≤ k) ⊎
(acc₁ ≡ suc acc₂ × k < modₕ 0 d n d × modₕ 0 d n d ≤ j) →
divₕ acc₁ d n j ≡ divₕ acc₂ d n k
divₕ-offsetEq d zero j k j≤d k≤d (inj₁ (refl , _)) = refl
divₕ-offsetEq d zero j k j≤d k≤d (inj₂′ (refl , _)) = refl
divₕ-offsetEq d zero j k j≤d k≤d (inj₃ (eq , () , _))
-- (0 , 0) cases
divₕ-offsetEq d (suc n) zero zero j≤d k≤d (inj₁ (refl , _)) =
divₕ-offsetEq d n d d ≤-refl ≤-refl (inj₂′ (refl , a[modₕ]n<n 0 n d , ≤-refl))
divₕ-offsetEq d (suc n) zero zero j≤d k≤d (inj₂′ (refl , _)) =
divₕ-offsetEq d n d d ≤-refl ≤-refl (inj₂′ (refl , a[modₕ]n<n 0 n d , ≤-refl))
divₕ-offsetEq d (suc n) zero zero j≤d k≤d (inj₃ (_ , 0<mod , mod≤0)) =
contradiction (<-transˡ 0<mod mod≤0) λ()
-- (0 , suc) cases
divₕ-offsetEq d (suc n) zero (suc k) j≤d k≤d (inj₁ (refl , _ , 1+k<mod)) =
divₕ-offsetEq d n d k ≤-refl (<⇒≤ k≤d) (inj₃ (refl , k<1+a[modₕ]n⇒k≤a[modₕ]n 0 (suc k) n d 1+k<mod , a[modₕ]n<n 0 n d))
divₕ-offsetEq d (suc n) zero (suc k) j≤d k≤d (inj₂′ (refl , mod≤0 , _)) =
divₕ-offsetEq d n d k ≤-refl (<⇒≤ k≤d) (inj₃ (refl , subst (k <_) (sym (a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 d n (n≤0⇒n≡0 mod≤0))) k≤d , a[modₕ]n<n 0 n d))
divₕ-offsetEq d (suc n) zero (suc k) j≤d k≤d (inj₃ (_ , 1+k<mod , mod≤0)) =
contradiction (<-transˡ 1+k<mod mod≤0) λ()
-- (suc , 0) cases
divₕ-offsetEq d (suc n) (suc j) zero j≤d k≤d (inj₁ (_ , () , _))
divₕ-offsetEq d (suc n) (suc j) zero j≤d k≤d (inj₂′ (_ , _ , ()))
divₕ-offsetEq d (suc n) (suc j) zero j≤d k≤d (inj₃ (eq , 0<mod , mod≤1+j)) =
divₕ-offsetEq d n j d (<⇒≤ j≤d) ≤-refl (inj₂′ (eq , 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 j n d 0<mod mod≤1+j , <⇒≤ j≤d))
-- (suc , suc) cases
divₕ-offsetEq d (suc n) (suc j) (suc k) j≤d k≤d (inj₁ (eq , s≤s j≤k , 1+k<mod)) =
divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₁ (eq , j≤k , k<1+a[modₕ]n⇒k≤a[modₕ]n 0 (suc k) n d 1+k<mod))
divₕ-offsetEq d (suc n) (suc j) (suc k) j≤d k≤d (inj₂′ (eq , mod≤1+j , (s≤s j≤k))) with modₕ 0 d (suc n) d ≟ 0
... | yes mod≡0 = divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₁ (eq , j≤k , subst (k <_) (sym (a+1[modₕ]n≡0⇒a[modₕ]n≡n-1 0 d n mod≡0)) k≤d))
... | no mod≢0 = divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₂′ (eq , 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 j n d (n≢0⇒n>0 mod≢0) mod≤1+j , j≤k))
divₕ-offsetEq d (suc n) (suc j) (suc k) j≤d k≤d (inj₃ (eq , k<mod , mod≤1+j)) =
divₕ-offsetEq d n j k (<⇒≤ j≤d) (<⇒≤ k≤d) (inj₃ (eq , k<1+a[modₕ]n⇒k≤a[modₕ]n 0 (suc k) n d k<mod , 1+a[modₕ]n≤1+k⇒a[modₕ]n≤k 0 j n d (<-transʳ z≤n k<mod) mod≤1+j))
-------------------------------------------------------------------------
-- Lemmas for divₕ that also have an interpretation for _/_
-- The quotient and remainder are related to the dividend and
-- divisor in the right way.
div-mod-lemma : ∀ accᵐ accᵈ d n →
accᵐ + accᵈ * suc (accᵐ + n) + d ≡
modₕ accᵐ (accᵐ + n) d n + divₕ accᵈ (accᵐ + n) d n * suc (accᵐ + n)
div-mod-lemma accᵐ accᵈ zero n = +-identityʳ _
div-mod-lemma accᵐ accᵈ (suc d) zero rewrite +-identityʳ accᵐ = begin-equality
accᵐ + accᵈ * suc accᵐ + suc d ≡⟨ +-suc _ d ⟩
suc accᵈ * suc accᵐ + d ≡⟨ div-mod-lemma zero (suc accᵈ) d accᵐ ⟩
modₕ 0 accᵐ d accᵐ +
divₕ (suc accᵈ) accᵐ d accᵐ * suc accᵐ ≡⟨⟩
modₕ accᵐ accᵐ (suc d) 0 +
divₕ accᵈ accᵐ (suc d) 0 * suc accᵐ ∎
div-mod-lemma accᵐ accᵈ (suc d) (suc n) rewrite +-suc accᵐ n = begin-equality
accᵐ + accᵈ * m + suc d ≡⟨ +-suc _ d ⟩
suc (accᵐ + accᵈ * m + d) ≡⟨ div-mod-lemma (suc accᵐ) accᵈ d n ⟩
modₕ _ _ d n + divₕ accᵈ _ d n * m ∎
where
m = 2 + accᵐ + n
divₕ-restart : ∀ {acc} d n j → j < n → divₕ acc d n j ≡ divₕ (suc acc) d (n ∸ suc j) d
divₕ-restart d (suc n) zero j<n = refl
divₕ-restart d (suc n) (suc j) (s≤s j<n) = divₕ-restart d n j j<n
divₕ-extractAcc : ∀ acc d n j → divₕ acc d n j ≡ acc + divₕ 0 d n j
divₕ-extractAcc acc d zero j = sym (+-identityʳ acc)
divₕ-extractAcc acc d (suc n) (suc j) = divₕ-extractAcc acc d n j
divₕ-extractAcc acc d (suc n) zero = begin-equality
divₕ (suc acc) d n d ≡⟨ divₕ-extractAcc (suc acc) d n d ⟩
suc acc + divₕ 0 d n d ≡⟨ sym (+-suc acc _) ⟩
acc + suc (divₕ 0 d n d) ≡⟨ cong (acc +_) (sym (divₕ-extractAcc 1 d n d)) ⟩
acc + divₕ 1 d n d ∎
divₕ-finish : ∀ {acc} d n j → j ≥ n → divₕ acc d n j ≡ acc
divₕ-finish d zero j j≥n = refl
divₕ-finish d (suc n) (suc j) (s≤s j≥n) = divₕ-finish d n j j≥n
n[divₕ]n≡1 : ∀ n m → divₕ 0 n (suc m) m ≡ 1
n[divₕ]n≡1 n zero = refl
n[divₕ]n≡1 n (suc m) = n[divₕ]n≡1 n m
a[divₕ]1≡a : ∀ acc a → divₕ acc 0 a 0 ≡ acc + a
a[divₕ]1≡a acc zero = sym (+-identityʳ acc)
a[divₕ]1≡a acc (suc a) = trans (a[divₕ]1≡a (suc acc) a) (sym (+-suc acc a))
a*n[divₕ]n≡a : ∀ acc a n → divₕ acc n (a * suc n) n ≡ acc + a
a*n[divₕ]n≡a acc zero n = sym (+-identityʳ acc)
a*n[divₕ]n≡a acc (suc a) n = begin-equality
divₕ acc n (suc a * suc n) n ≡⟨ divₕ-restart n (suc a * suc n) n (m≤m+n (suc n) _) ⟩
divₕ (suc acc) n (suc a * suc n ∸ suc n) n ≡⟨⟩
divₕ (suc acc) n (suc n + a * suc n ∸ suc n) n ≡⟨ div-cong₃ (m+n∸m≡n (suc n) (a * suc n)) ⟩
divₕ (suc acc) n (a * suc n) n ≡⟨ a*n[divₕ]n≡a (suc acc) a n ⟩
suc acc + a ≡⟨ sym (+-suc acc a) ⟩
acc + suc a ∎
+-distrib-divₕ : ∀ acc k m n j → modₕ k (k + j) m j + modₕ 0 (k + j) n (k + j) < suc (k + j) →
divₕ acc (k + j) (m + n) j ≡ divₕ acc (k + j) m j + divₕ 0 (k + j) n (k + j)
+-distrib-divₕ acc k (suc m) n zero leq rewrite +-identityʳ k = +-distrib-divₕ (suc acc) 0 m n k leq
+-distrib-divₕ acc k (suc m) n (suc j) leq rewrite +-suc k j = +-distrib-divₕ acc (suc k) m n j leq
+-distrib-divₕ acc k zero n j leq = begin-equality
divₕ acc (k + j) n j ≡⟨ divₕ-extractAcc acc (k + j) n j ⟩
acc + divₕ 0 (k + j) n j ≡⟨ cong (acc +_) (divₕ-offsetEq _ n j _ (m≤n+m j k) ≤-refl case) ⟩
acc + divₕ 0 (k + j) n (k + j) ∎
where
case = inj₂′ (refl , +-cancelˡ-≤ (suc k) _ _ leq , m≤n+m j k)
divₕ-mono-≤ : ∀ {acc} k {m n o p} → m ≤ n → p ≤ o → divₕ acc (k + o) m o ≤ divₕ acc (k + p) n p
divₕ-mono-≤ {acc} k {0} {n} {_} {p} z≤n p≤o = acc≤divₕ[acc] (k + p) n p
divₕ-mono-≤ {acc} k {_} {_} {suc o} {suc p} (s≤s m≤n) (s≤s p≤o)
rewrite +-suc k o | +-suc k p = divₕ-mono-≤ (suc k) m≤n p≤o
divₕ-mono-≤ {acc} k {suc m} {suc n} {o} {0} (s≤s m≤n) z≤n with o <? suc m
... | no o≮1+m rewrite +-identityʳ k = begin
divₕ acc (k + o) (suc m) o ≡⟨ divₕ-finish (k + o) (suc m) o (≮⇒≥ o≮1+m) ⟩
acc ≤⟨ n≤1+n acc ⟩
suc acc ≤⟨ acc≤divₕ[acc] k n k ⟩
divₕ (suc acc) k n k ∎
... | yes o<1+m rewrite +-identityʳ k = begin
divₕ acc (k + o) (suc m) o ≡⟨ divₕ-restart (k + o) (suc m) o o<1+m ⟩
divₕ (suc acc) (k + o) (m ∸ o) (k + o) ≤⟨ divₕ-mono-≤ 0 (≤-trans (m∸n≤m m o) m≤n) (m≤m+n k o) ⟩
divₕ (suc acc) k n k ∎