@@ -11,7 +11,7 @@ module Data.Char.Properties where
11
11
open import Data.Bool.Base using (Bool)
12
12
open import Data.Char.Base
13
13
import Data.Nat.Base as ℕ
14
- import Data.Nat.Properties as ℕₚ
14
+ import Data.Nat.Properties as ℕ
15
15
open import Data.Product.Base using (_,_)
16
16
17
17
open import Function.Base
@@ -56,7 +56,7 @@ open import Agda.Builtin.Char.Properties
56
56
57
57
infix 4 _≟_
58
58
_≟_ : Decidable {A = Char} _≡_
59
- x ≟ y = map′ ≈⇒≡ ≈-reflexive (toℕ x ℕₚ .≟ toℕ y)
59
+ x ≟ y = map′ ≈⇒≡ ≈-reflexive (toℕ x ℕ .≟ toℕ y)
60
60
61
61
setoid : Setoid _ _
62
62
setoid = PropEq.setoid Char
@@ -95,22 +95,22 @@ private
95
95
96
96
infix 4 _<?_
97
97
_<?_ : Decidable _<_
98
- _<?_ = On.decidable toℕ ℕ._<_ ℕₚ ._<?_
98
+ _<?_ = On.decidable toℕ ℕ._<_ ℕ ._<?_
99
99
100
100
<-cmp : Trichotomous _≡_ _<_
101
- <-cmp c d with ℕₚ .<-cmp (toℕ c) (toℕ d)
101
+ <-cmp c d with ℕ .<-cmp (toℕ c) (toℕ d)
102
102
... | tri< lt ¬eq ¬gt = tri< lt (≉⇒≢ ¬eq) ¬gt
103
103
... | tri≈ ¬lt eq ¬gt = tri≈ ¬lt (≈⇒≡ eq) ¬gt
104
104
... | tri> ¬lt ¬eq gt = tri> ¬lt (≉⇒≢ ¬eq) gt
105
105
106
106
<-irrefl : Irreflexive _≡_ _<_
107
- <-irrefl = ℕₚ .<-irrefl ∘′ cong toℕ
107
+ <-irrefl = ℕ .<-irrefl ∘′ cong toℕ
108
108
109
109
<-trans : Transitive _<_
110
- <-trans {c} {d} {e} = On.transitive toℕ ℕ._<_ ℕₚ .<-trans {c} {d} {e}
110
+ <-trans {c} {d} {e} = On.transitive toℕ ℕ._<_ ℕ .<-trans {c} {d} {e}
111
111
112
112
<-asym : Asymmetric _<_
113
- <-asym {c} {d} = On.asymmetric toℕ ℕ._<_ ℕₚ .<-asym {c} {d}
113
+ <-asym {c} {d} = On.asymmetric toℕ ℕ._<_ ℕ .<-asym {c} {d}
114
114
115
115
<-isStrictPartialOrder : IsStrictPartialOrder _≡_ _<_
116
116
<-isStrictPartialOrder = record
@@ -151,7 +151,7 @@ _≤?_ = Reflₚ.decidable <-cmp
151
151
≤-trans = Reflₚ.trans (λ {a} {b} {c} → <-trans {a} {b} {c})
152
152
153
153
≤-antisym : Antisymmetric _≡_ _≤_
154
- ≤-antisym = Reflₚ.antisym _≡_ refl ℕₚ .<-asym
154
+ ≤-antisym = Reflₚ.antisym _≡_ refl ℕ .<-asym
155
155
156
156
≤-isPreorder : IsPreorder _≡_ _≤_
157
157
≤-isPreorder = record
@@ -220,7 +220,7 @@ Please use Propositional Equality's subst instead."
220
220
221
221
infix 4 _≈?_
222
222
_≈?_ : Decidable _≈_
223
- x ≈? y = toℕ x ℕₚ .≟ toℕ y
223
+ x ≈? y = toℕ x ℕ .≟ toℕ y
224
224
225
225
≈-isEquivalence : IsEquivalence _≈_
226
226
≈-isEquivalence = record
@@ -277,28 +277,28 @@ Please use decSetoid instead."
277
277
#-}
278
278
279
279
<-isStrictPartialOrder-≈ : IsStrictPartialOrder _≈_ _<_
280
- <-isStrictPartialOrder-≈ = On.isStrictPartialOrder toℕ ℕₚ .<-isStrictPartialOrder
280
+ <-isStrictPartialOrder-≈ = On.isStrictPartialOrder toℕ ℕ .<-isStrictPartialOrder
281
281
{-# WARNING_ON_USAGE <-isStrictPartialOrder-≈
282
282
"Warning: <-isStrictPartialOrder-≈ was deprecated in v1.5.
283
283
Please use <-isStrictPartialOrder instead."
284
284
#-}
285
285
286
286
<-isStrictTotalOrder-≈ : IsStrictTotalOrder _≈_ _<_
287
- <-isStrictTotalOrder-≈ = On.isStrictTotalOrder toℕ ℕₚ .<-isStrictTotalOrder
287
+ <-isStrictTotalOrder-≈ = On.isStrictTotalOrder toℕ ℕ .<-isStrictTotalOrder
288
288
{-# WARNING_ON_USAGE <-isStrictTotalOrder-≈
289
289
"Warning: <-isStrictTotalOrder-≈ was deprecated in v1.5.
290
290
Please use <-isStrictTotalOrder instead."
291
291
#-}
292
292
293
293
<-strictPartialOrder-≈ : StrictPartialOrder _ _ _
294
- <-strictPartialOrder-≈ = On.strictPartialOrder ℕₚ .<-strictPartialOrder toℕ
294
+ <-strictPartialOrder-≈ = On.strictPartialOrder ℕ .<-strictPartialOrder toℕ
295
295
{-# WARNING_ON_USAGE <-strictPartialOrder-≈
296
296
"Warning: <-strictPartialOrder-≈ was deprecated in v1.5.
297
297
Please use <-strictPartialOrder instead."
298
298
#-}
299
299
300
300
<-strictTotalOrder-≈ : StrictTotalOrder _ _ _
301
- <-strictTotalOrder-≈ = On.strictTotalOrder ℕₚ .<-strictTotalOrder toℕ
301
+ <-strictTotalOrder-≈ = On.strictTotalOrder ℕ .<-strictTotalOrder toℕ
302
302
{-# WARNING_ON_USAGE <-strictTotalOrder-≈
303
303
"Warning: <-strictTotalOrder-≈ was deprecated in v1.5.
304
304
Please use <-strictTotalOrder instead."
0 commit comments