@@ -14,11 +14,11 @@ open import Algebra.Definitions
1414 using (Associative; LeftIdentity; RightIdentity; Identity)
1515open import Algebra.Structures
1616 using (IsMagma; IsSemigroup; IsMonoid; IsCommutativeMonoid)
17- open import Data.Empty.Polymorphic using (⊥)
17+ open import Data.Empty.Polymorphic using (⊥; ⊥-elim )
1818open import Data.Product.Base using (_,_)
1919open import Data.Sum.Base using (_⊎_; inj₁; inj₂; map; [_,_]; swap; assocʳ; assocˡ)
2020open import Data.Sum.Properties using (swap-involutive)
21- open import Data.Unit.Polymorphic.Base using (⊤; tt )
21+ open import Data.Unit.Polymorphic.Base using (⊤)
2222open import Function.Base using (id; _∘_)
2323open import Function.Properties.Inverse using (↔-isEquivalence)
2424open import Function.Bundles using (_↔_; Inverse; mk↔ₛ′)
@@ -36,9 +36,6 @@ private
3636 a b c d : Level
3737 A B C D : Set a
3838
39- ♯ : {B : ⊥ {a} → Set b} → (w : ⊥) → B w
40- ♯ ()
41-
4239------------------------------------------------------------------------
4340-- Algebraic properties
4441
@@ -62,10 +59,10 @@ module _ (ℓ : Level) where
6259
6360 -- ⊥ is an identity for ⊎
6461 ⊎-identityˡ : LeftIdentity {ℓ = ℓ} _↔_ ⊥ _⊎_
65- ⊎-identityˡ A = mk↔ₛ′ [ ♯ , id ] inj₂ cong′ [ ♯ , cong′ ]
62+ ⊎-identityˡ A = mk↔ₛ′ [ ⊥-elim , id ] inj₂ cong′ [ ⊥-elim , cong′ ]
6663
6764 ⊎-identityʳ : RightIdentity {ℓ = ℓ} _↔_ ⊥ _⊎_
68- ⊎-identityʳ _ = mk↔ₛ′ [ id , ♯ ] inj₁ cong′ [ cong′ , ♯ ]
65+ ⊎-identityʳ _ = mk↔ₛ′ [ id , ⊥-elim ] inj₁ cong′ [ cong′ , ⊥-elim ]
6966
7067 ⊎-identity : Identity _↔_ ⊥ _⊎_
7168 ⊎-identity = ⊎-identityˡ , ⊎-identityʳ
0 commit comments