Skip to content

Commit 469062c

Browse files
committed
refactor: remove redundant private lemma
1 parent b912931 commit 469062c

File tree

1 file changed

+4
-7
lines changed

1 file changed

+4
-7
lines changed

src/Data/Sum/Algebra.agda

Lines changed: 4 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -14,11 +14,11 @@ open import Algebra.Definitions
1414
using (Associative; LeftIdentity; RightIdentity; Identity)
1515
open import Algebra.Structures
1616
using (IsMagma; IsSemigroup; IsMonoid; IsCommutativeMonoid)
17-
open import Data.Empty.Polymorphic using (⊥)
17+
open import Data.Empty.Polymorphic using (⊥; ⊥-elim)
1818
open import Data.Product.Base using (_,_)
1919
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; map; [_,_]; swap; assocʳ; assocˡ)
2020
open import Data.Sum.Properties using (swap-involutive)
21-
open import Data.Unit.Polymorphic.Base using (⊤; tt)
21+
open import Data.Unit.Polymorphic.Base using (⊤)
2222
open import Function.Base using (id; _∘_)
2323
open import Function.Properties.Inverse using (↔-isEquivalence)
2424
open import Function.Bundles using (_↔_; Inverse; mk↔ₛ′)
@@ -36,9 +36,6 @@ private
3636
a b c d : Level
3737
A B C D : Set a
3838

39-
: {B : ⊥ {a} Set b} (w : ⊥) B w
40-
♯ ()
41-
4239
------------------------------------------------------------------------
4340
-- Algebraic properties
4441

@@ -62,10 +59,10 @@ module _ (ℓ : Level) where
6259

6360
-- ⊥ is an identity for ⊎
6461
⊎-identityˡ : LeftIdentity {ℓ = ℓ} _↔_ ⊥ _⊎_
65-
⊎-identityˡ A = mk↔ₛ′ [ , id ] inj₂ cong′ [ , cong′ ]
62+
⊎-identityˡ A = mk↔ₛ′ [ ⊥-elim , id ] inj₂ cong′ [ ⊥-elim , cong′ ]
6663

6764
⊎-identityʳ : RightIdentity {ℓ = ℓ} _↔_ ⊥ _⊎_
68-
⊎-identityʳ _ = mk↔ₛ′ [ id , ] inj₁ cong′ [ cong′ , ]
65+
⊎-identityʳ _ = mk↔ₛ′ [ id , ⊥-elim ] inj₁ cong′ [ cong′ , ⊥-elim ]
6966

7067
⊎-identity : Identity _↔_ ⊥ _⊎_
7168
⊎-identity = ⊎-identityˡ , ⊎-identityʳ

0 commit comments

Comments
 (0)