7
7
{-# OPTIONS --cubical-compatible --safe #-}
8
8
9
9
open import Algebra using (CommutativeMagma)
10
- open import Data.Product.Base using (_×_; _,_; map)
11
10
12
11
module Algebra.Properties.CommutativeMagma.Divisibility
13
12
{a ℓ} (CM : CommutativeMagma a ℓ)
14
13
where
15
14
16
- open CommutativeMagma CM
15
+ open import Data.Product.Base using (_×_; _,_)
17
16
18
- open import Relation.Binary.Reasoning.Setoid setoid
17
+ open CommutativeMagma CM using (magma; _≈_; _∙_; comm)
19
18
20
19
------------------------------------------------------------------------
21
20
-- Re-export the contents of magmas
@@ -31,8 +30,28 @@ x∣xy x y = y , comm y x
31
30
xy≈z⇒x∣z : ∀ x y {z} → x ∙ y ≈ z → x ∣ z
32
31
xy≈z⇒x∣z x y xy≈z = ∣-respʳ xy≈z (x∣xy x y)
33
32
34
- ∣-factors : ∀ x y → (x ∣ x ∙ y) × (y ∣ x ∙ y)
35
- ∣-factors x y = x∣xy x y , x∣yx y x
33
+ x|xy∧y|xy : ∀ x y → (x ∣ x ∙ y) × (y ∣ x ∙ y)
34
+ x|xy∧y|xy x y = x∣xy x y , x∣yx y x
36
35
37
- ∣-factors-≈ : ∀ x y {z} → x ∙ y ≈ z → x ∣ z × y ∣ z
38
- ∣-factors-≈ x y xy≈z = xy≈z⇒x∣z x y xy≈z , xy≈z⇒y∣z x y xy≈z
36
+ xy≈z⇒x|z∧y|z : ∀ x y {z} → x ∙ y ≈ z → x ∣ z × y ∣ z
37
+ xy≈z⇒x|z∧y|z x y xy≈z = xy≈z⇒x∣z x y xy≈z , xy≈z⇒y∣z x y xy≈z
38
+
39
+
40
+ ------------------------------------------------------------------------
41
+ -- DEPRECATED NAMES
42
+ ------------------------------------------------------------------------
43
+ -- Please use the new names as continuing support for the old names is
44
+ -- not guaranteed.
45
+
46
+ -- Version 2.2
47
+
48
+ ∣-factors = x|xy∧y|xy
49
+ {-# WARNING_ON_USAGE ∣-factors
50
+ "Warning: ∣-factors was deprecated in v2.2.
51
+ Please use x|xy∧y|xy instead. "
52
+ #-}
53
+ ∣-factors-≈ = xy≈z⇒x|z∧y|z
54
+ {-# WARNING_ON_USAGE ∣-factors-≈
55
+ "Warning: ∣-factors-≈ was deprecated in v2.2.
56
+ Please use xy≈z⇒x|z∧y|z instead. "
57
+ #-}
0 commit comments