|
| 1 | +------------------------------------------------------------------------ |
| 2 | +-- The Agda standard library |
| 3 | +-- |
| 4 | +-- Additional properties for setoids |
| 5 | +------------------------------------------------------------------------ |
| 6 | + |
| 7 | +{-# OPTIONS --cubical-compatible --safe #-} |
| 8 | + |
| 9 | +open import Relation.Binary.Bundles using (PartialSetoid) |
| 10 | + |
| 11 | +module Relation.Binary.Properties.PartialSetoid |
| 12 | + {a ℓ} (S : PartialSetoid a ℓ) where |
| 13 | + |
| 14 | +open import Data.Product.Base using (_,_; _×_) |
| 15 | +open import Relation.Binary.Definitions using (LeftTrans; RightTrans) |
| 16 | +open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_) |
| 17 | + |
| 18 | +open PartialSetoid S |
| 19 | + |
| 20 | +private |
| 21 | + variable |
| 22 | + x y z : Carrier |
| 23 | + |
| 24 | +------------------------------------------------------------------------ |
| 25 | +-- Proofs for partial equivalence relations |
| 26 | + |
| 27 | +trans-reflˡ : LeftTrans _≡_ _≈_ |
| 28 | +trans-reflˡ ≡.refl p = p |
| 29 | + |
| 30 | +trans-reflʳ : RightTrans _≈_ _≡_ |
| 31 | +trans-reflʳ p ≡.refl = p |
| 32 | + |
| 33 | +partial-reflˡ : x ≈ y → x ≈ x |
| 34 | +partial-reflˡ p = trans p (sym p) |
| 35 | + |
| 36 | +partial-reflʳ : x ≈ y → y ≈ y |
| 37 | +partial-reflʳ p = trans (sym p) p |
| 38 | + |
| 39 | +partial-refl : x ≈ y → x ≈ x × y ≈ y |
| 40 | +partial-refl p = partial-reflˡ p , partial-reflʳ p |
| 41 | + |
| 42 | +partial-reflexiveˡ : x ≈ y → x ≡ z → x ≈ z |
| 43 | +partial-reflexiveˡ p ≡.refl = partial-reflˡ p |
| 44 | + |
| 45 | +partial-reflexiveʳ : x ≈ y → y ≡ z → y ≈ z |
| 46 | +partial-reflexiveʳ p ≡.refl = partial-reflʳ p |
| 47 | + |
0 commit comments