9
9
10
10
{-# OPTIONS --cubical-compatible --safe #-}
11
11
12
- open import Data.Product.Base as Prod
12
+ open import Data.Product.Base as Product
13
13
open import Relation.Binary.Core
14
14
15
15
module Algebra.Construct.Subst.Equality
@@ -45,13 +45,13 @@ sel : ∀ {∙} → Selective ≈₁ ∙ → Selective ≈₂ ∙
45
45
sel sel x y = Sum.map to to (sel x y)
46
46
47
47
identity : ∀ {∙ e} → Identity ≈₁ e ∙ → Identity ≈₂ e ∙
48
- identity = Prod .map (to ∘_) (to ∘_)
48
+ identity = Product .map (to ∘_) (to ∘_)
49
49
50
50
inverse : ∀ {∙ e ⁻¹} → Inverse ≈₁ ⁻¹ ∙ e → Inverse ≈₂ ⁻¹ ∙ e
51
- inverse = Prod .map (to ∘_) (to ∘_)
51
+ inverse = Product .map (to ∘_) (to ∘_)
52
52
53
53
absorptive : ∀ {∙ ◦} → Absorptive ≈₁ ∙ ◦ → Absorptive ≈₂ ∙ ◦
54
- absorptive = Prod .map (λ f x y → to (f x y)) (λ f x y → to (f x y))
54
+ absorptive = Product .map (λ f x y → to (f x y)) (λ f x y → to (f x y))
55
55
56
56
distribˡ : ∀ {∙ ◦} → _DistributesOverˡ_ ≈₁ ∙ ◦ → _DistributesOverˡ_ ≈₂ ∙ ◦
57
57
distribˡ distribˡ x y z = to (distribˡ x y z)
@@ -60,7 +60,7 @@ distribʳ : ∀ {∙ ◦} → _DistributesOverʳ_ ≈₁ ∙ ◦ → _Distribute
60
60
distribʳ distribʳ x y z = to (distribʳ x y z)
61
61
62
62
distrib : ∀ {∙ ◦} → _DistributesOver_ ≈₁ ∙ ◦ → _DistributesOver_ ≈₂ ∙ ◦
63
- distrib {∙} {◦} = Prod .map (distribˡ {∙} {◦}) (distribʳ {∙} {◦})
63
+ distrib {∙} {◦} = Product .map (distribˡ {∙} {◦}) (distribʳ {∙} {◦})
64
64
65
65
------------------------------------------------------------------------
66
66
-- Structures
@@ -92,7 +92,7 @@ isSelectiveMagma S = record
92
92
isMonoid : ∀ {∙ ε} → IsMonoid ≈₁ ∙ ε → IsMonoid ≈₂ ∙ ε
93
93
isMonoid S = record
94
94
{ isSemigroup = isSemigroup S.isSemigroup
95
- ; identity = Prod .map (to ∘_) (to ∘_) S.identity
95
+ ; identity = Product .map (to ∘_) (to ∘_) S.identity
96
96
} where module S = IsMonoid S
97
97
98
98
isCommutativeMonoid : ∀ {∙ ε} →
@@ -113,7 +113,7 @@ isIdempotentCommutativeMonoid {∙} S = record
113
113
isGroup : ∀ {∙ ε ⁻¹} → IsGroup ≈₁ ∙ ε ⁻¹ → IsGroup ≈₂ ∙ ε ⁻¹
114
114
isGroup S = record
115
115
{ isMonoid = isMonoid S.isMonoid
116
- ; inverse = Prod .map (to ∘_) (to ∘_) S.inverse
116
+ ; inverse = Product .map (to ∘_) (to ∘_) S.inverse
117
117
; ⁻¹-cong = cong₁ S.⁻¹-cong
118
118
} where module S = IsGroup S
119
119
@@ -141,7 +141,7 @@ isSemiringWithoutOne {+} {*} S = record
141
141
; *-cong = cong₂ S.*-cong
142
142
; *-assoc = assoc {*} S.*-assoc
143
143
; distrib = distrib {*} {+} S.distrib
144
- ; zero = Prod .map (to ∘_) (to ∘_) S.zero
144
+ ; zero = Product .map (to ∘_) (to ∘_) S.zero
145
145
} where module S = IsSemiringWithoutOne S
146
146
147
147
isCommutativeSemiringWithoutOne : ∀ {+ * 0#} →
0 commit comments