Skip to content

Commit 5586108

Browse files
authored
Qualified import of Data.Product.Base fixing #2280 (#2284)
* Qualified import of `Data.Product.Base as Product` * more modules affected
1 parent b3bfbb2 commit 5586108

File tree

56 files changed

+214
-214
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

56 files changed

+214
-214
lines changed

src/Algebra/Construct/Flip/Op.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
module Algebra.Construct.Flip.Op where
1111

1212
open import Algebra
13-
import Data.Product.Base as Prod
13+
import Data.Product.Base as Product
1414
import Data.Sum.Base as Sum
1515
open import Function.Base using (flip)
1616
open import Level using (Level)
@@ -39,7 +39,7 @@ module _ (≈ : Rel A ℓ) (∙ : Op₂ A) where
3939
associative sym assoc x y z = sym (assoc z y x)
4040

4141
identity : Identity ≈ ε ∙ Identity ≈ ε (flip ∙)
42-
identity id = Prod.swap id
42+
identity id = Product.swap id
4343

4444
commutative : Commutative ≈ ∙ Commutative ≈ (flip ∙)
4545
commutative comm = flip comm
@@ -51,7 +51,7 @@ module _ (≈ : Rel A ℓ) (∙ : Op₂ A) where
5151
idempotent idem = idem
5252

5353
inverse : Inverse ≈ ε ⁻¹ ∙ Inverse ≈ ε ⁻¹ (flip ∙)
54-
inverse inv = Prod.swap inv
54+
inverse inv = Product.swap inv
5555

5656
------------------------------------------------------------------------
5757
-- Structures

src/Algebra/Construct/Subst/Equality.agda

+8-8
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99

1010
{-# OPTIONS --cubical-compatible --safe #-}
1111

12-
open import Data.Product.Base as Prod
12+
open import Data.Product.Base as Product
1313
open import Relation.Binary.Core
1414

1515
module Algebra.Construct.Subst.Equality
@@ -45,13 +45,13 @@ sel : ∀ {∙} → Selective ≈₁ ∙ → Selective ≈₂ ∙
4545
sel sel x y = Sum.map to to (sel x y)
4646

4747
identity : {∙ e} Identity ≈₁ e ∙ Identity ≈₂ e ∙
48-
identity = Prod.map (to ∘_) (to ∘_)
48+
identity = Product.map (to ∘_) (to ∘_)
4949

5050
inverse : {∙ e ⁻¹} Inverse ≈₁ ⁻¹ ∙ e Inverse ≈₂ ⁻¹ ∙ e
51-
inverse = Prod.map (to ∘_) (to ∘_)
51+
inverse = Product.map (to ∘_) (to ∘_)
5252

5353
absorptive : {∙ ◦} Absorptive ≈₁ ∙ ◦ Absorptive ≈₂ ∙ ◦
54-
absorptive = Prod.map (λ f x y to (f x y)) (λ f x y to (f x y))
54+
absorptive = Product.map (λ f x y to (f x y)) (λ f x y to (f x y))
5555

5656
distribˡ : {∙ ◦} _DistributesOverˡ_ ≈₁ ∙ ◦ _DistributesOverˡ_ ≈₂ ∙ ◦
5757
distribˡ distribˡ x y z = to (distribˡ x y z)
@@ -60,7 +60,7 @@ distribʳ : ∀ {∙ ◦} → _DistributesOverʳ_ ≈₁ ∙ ◦ → _Distribute
6060
distribʳ distribʳ x y z = to (distribʳ x y z)
6161

6262
distrib : {∙ ◦} _DistributesOver_ ≈₁ ∙ ◦ _DistributesOver_ ≈₂ ∙ ◦
63-
distrib {∙} {◦} = Prod.map (distribˡ {∙} {◦}) (distribʳ {∙} {◦})
63+
distrib {∙} {◦} = Product.map (distribˡ {∙} {◦}) (distribʳ {∙} {◦})
6464

6565
------------------------------------------------------------------------
6666
-- Structures
@@ -92,7 +92,7 @@ isSelectiveMagma S = record
9292
isMonoid : {∙ ε} IsMonoid ≈₁ ∙ ε IsMonoid ≈₂ ∙ ε
9393
isMonoid S = record
9494
{ isSemigroup = isSemigroup S.isSemigroup
95-
; identity = Prod.map (to ∘_) (to ∘_) S.identity
95+
; identity = Product.map (to ∘_) (to ∘_) S.identity
9696
} where module S = IsMonoid S
9797

9898
isCommutativeMonoid : {∙ ε}
@@ -113,7 +113,7 @@ isIdempotentCommutativeMonoid {∙} S = record
113113
isGroup : {∙ ε ⁻¹} IsGroup ≈₁ ∙ ε ⁻¹ IsGroup ≈₂ ∙ ε ⁻¹
114114
isGroup S = record
115115
{ isMonoid = isMonoid S.isMonoid
116-
; inverse = Prod.map (to ∘_) (to ∘_) S.inverse
116+
; inverse = Product.map (to ∘_) (to ∘_) S.inverse
117117
; ⁻¹-cong = cong₁ S.⁻¹-cong
118118
} where module S = IsGroup S
119119

@@ -141,7 +141,7 @@ isSemiringWithoutOne {+} {*} S = record
141141
; *-cong = cong₂ S.*-cong
142142
; *-assoc = assoc {*} S.*-assoc
143143
; distrib = distrib {*} {+} S.distrib
144-
; zero = Prod.map (to ∘_) (to ∘_) S.zero
144+
; zero = Product.map (to ∘_) (to ∘_) S.zero
145145
} where module S = IsSemiringWithoutOne S
146146

147147
isCommutativeSemiringWithoutOne : {+ * 0#}

src/Algebra/Lattice/Construct/Subst/Equality.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@
1212
open import Algebra.Core using (Op₂)
1313
open import Algebra.Definitions
1414
open import Algebra.Lattice.Structures
15-
open import Data.Product.Base as Prod
15+
open import Data.Product.Base using (_,_)
1616
open import Function.Base
1717
open import Relation.Binary.Core
1818

src/Codata/Musical/Colist.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ open import Data.Maybe.Relation.Unary.Any using (just)
2121
open import Data.Nat.Base using (ℕ; zero; suc)
2222
open import Data.List.Base using (List; []; _∷_)
2323
open import Data.List.NonEmpty using (List⁺; _∷_)
24-
open import Data.Product.Base as Prod using (∃; _×_; _,_)
24+
open import Data.Product.Base as Product using (∃; _×_; _,_)
2525
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂; [_,_]′)
2626
open import Data.Vec.Bounded as Vec≤ using (Vec≤)
2727
open import Function.Base
@@ -108,7 +108,7 @@ Any-∈ {P = P} = mk↔ₛ′
108108
where
109109
to : {xs} Any P xs λ x x ∈ xs × P x
110110
to (here p) = _ , here P.refl , p
111-
to (there p) = Prod.map id (Prod.map there id) (to p)
111+
to (there p) = Product.map id (Product.map there id) (to p)
112112

113113
from : {x xs} x ∈ xs P x Any P xs
114114
from (here P.refl) p = here p
@@ -118,7 +118,7 @@ Any-∈ {P = P} = mk↔ₛ′
118118
to (from x∈xs p) ≡ (x , x∈xs , p)
119119
to∘from (here P.refl) p = P.refl
120120
to∘from (there x∈xs) p =
121-
P.cong (Prod.map id (Prod.map there id)) (to∘from x∈xs p)
121+
P.cong (Product.map id (Product.map there id)) (to∘from x∈xs p)
122122

123123
from∘to : {xs} (p : Any P xs)
124124
let (x , x∈xs , px) = to p in from x∈xs px ≡ p

src/Codata/Musical/Colist/Infinite-merge.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ open import Codata.Musical.Colist as Colist hiding (_⋎_)
1313
open import Data.Nat.Base
1414
open import Data.Nat.Induction using (<′-wellFounded)
1515
open import Data.Nat.Properties
16-
open import Data.Product.Base as Prod using (_×_; _,_; ∃; ∃₂; proj₁; proj₂)
16+
open import Data.Product.Base as Product using (_×_; _,_; ∃; ∃₂; proj₁; proj₂)
1717
open import Data.Sum.Base
1818
open import Data.Sum.Properties
1919
open import Data.Sum.Function.Propositional using (_⊎-cong_)
@@ -195,7 +195,7 @@ Any-merge {P = P} xss = mk↔ₛ′ (proj₁ ∘ to xss) from to∘from (proj₂
195195
| index-Any-⋎P xs p
196196
... | inj₁ q | P.refl | _ = here (inj₂ q) , P.refl
197197
... | inj₂ q | P.refl | q≤p =
198-
Prod.map there
198+
Product.map there
199199
(P.cong (there ∘ (Inverse.from (Any-⋎P xs)) ∘ inj₂))
200200
(rec (s≤′s q≤p))
201201

src/Codata/Sized/Colist/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ open import Data.Maybe.Base as Maybe using (Maybe; nothing; just)
2727
import Data.Maybe.Properties as Maybeₚ
2828
open import Data.Maybe.Relation.Unary.All using (All; nothing; just)
2929
open import Data.Nat.Base as ℕ using (zero; suc; z≤n; s≤s)
30-
open import Data.Product.Base as Prod using (_×_; _,_; uncurry)
30+
open import Data.Product.Base as Product using (_×_; _,_; uncurry)
3131
open import Data.These.Base as These using (These; this; that; these)
3232
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
3333
open import Function.Base
@@ -106,7 +106,7 @@ lookup-replicate (suc k) (suc n) a = lookup-replicate k (n .force) a
106106
-- Properties of unfold
107107

108108
map-unfold : (f : B C) (alg : A Maybe (A × B)) a
109-
i ⊢ map f (unfold alg a) ≈ unfold (Maybe.map (Prod.map₂ f) ∘ alg) a
109+
i ⊢ map f (unfold alg a) ≈ unfold (Maybe.map (Product.map₂ f) ∘ alg) a
110110
map-unfold f alg a with alg a
111111
... | nothing = []
112112
... | just (a′ , b) = Eq.refl ∷ λ where .force map-unfold f alg a′

src/Codata/Sized/Cowriter.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ open import Data.Unit.Base
1818
open import Data.List.Base using (List; []; _∷_)
1919
open import Data.List.NonEmpty.Base using (List⁺; _∷_)
2020
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
21-
open import Data.Product.Base as Prod using (_×_; _,_)
21+
open import Data.Product.Base as Product using (_×_; _,_)
2222
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
2323
open import Data.Vec.Base using (Vec; []; _∷_)
2424
open import Data.Vec.Bounded.Base as Vec≤ using (Vec≤; _,_)
@@ -68,11 +68,11 @@ length (w ∷ cw) = suc λ where .force → length (cw .force)
6868
splitAt : (n : ℕ) Cowriter W A ∞ (Vec W n × Cowriter W A ∞) ⊎ (Vec≤ W n × A)
6969
splitAt zero cw = inj₁ ([] , cw)
7070
splitAt (suc n) [ a ] = inj₂ (Vec≤.[] , a)
71-
splitAt (suc n) (w ∷ cw) = Sum.map (Prod.map₁ (w ∷_)) (Prod.map₁ (w Vec≤.∷_))
71+
splitAt (suc n) (w ∷ cw) = Sum.map (Product.map₁ (w ∷_)) (Product.map₁ (w Vec≤.∷_))
7272
$ splitAt n (cw .force)
7373

7474
take : (n : ℕ) Cowriter W A ∞ Vec W n ⊎ (Vec≤ W n × A)
75-
take n = Sum.map₁ Prod.proj₁ ∘′ splitAt n
75+
take n = Sum.map₁ Product.proj₁ ∘′ splitAt n
7676

7777
infixr 5 _++_ _⁺++_
7878
_++_ : {i} List W Cowriter W A i Cowriter W A i

src/Codata/Sized/M/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ open import Codata.Sized.M
1515
open import Codata.Sized.M.Bisimilarity
1616
open import Data.Container.Core as C hiding (map)
1717
import Data.Container.Morphism as Mp
18-
open import Data.Product.Base as Prod using (_,_)
18+
open import Data.Product.Base as Product using (_,_)
1919
open import Data.Product.Properties hiding (map-cong)
2020
open import Function.Base using (_$′_; _∘′_)
2121
import Relation.Binary.PropositionalEquality.Core as P

src/Codata/Sized/Stream/Properties.agda

+4-4
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open import Data.Nat.GeneralisedArithmetic using (fold; fold-pull)
2020
open import Data.List.Base as List using ([]; _∷_)
2121
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
2222
import Data.List.Relation.Binary.Equality.Propositional as Eq
23-
open import Data.Product.Base as Prod using (_,_)
23+
open import Data.Product.Base as Product using (_,_)
2424
open import Data.Vec.Base as Vec using (_∷_)
2525

2626
open import Function.Base using (id; _$_; _∘′_; const)
@@ -49,7 +49,7 @@ take-repeat-identity (suc n) a = P.cong (a Vec.∷_) (take-repeat-identity n a)
4949

5050
splitAt-repeat-identity : (n : ℕ) (a : A) splitAt n (repeat a) ≡ (Vec.replicate n a , repeat a)
5151
splitAt-repeat-identity zero a = P.refl
52-
splitAt-repeat-identity (suc n) a = P.cong (Prod.map₁ (a ∷_)) (splitAt-repeat-identity n a)
52+
splitAt-repeat-identity (suc n) a = P.cong (Product.map₁ (a ∷_)) (splitAt-repeat-identity n a)
5353

5454
replicate-repeat : {i} (n : ℕ) (a : A) i ⊢ List.replicate n a ++ repeat a ≈ repeat a
5555
replicate-repeat zero a = refl
@@ -103,10 +103,10 @@ map-∘ f g (a ∷ as) = P.refl ∷ λ where .force → map-∘ f g (as .force)
103103
-- splitAt
104104

105105
splitAt-map : n (f : A B) xs
106-
splitAt n (map f xs) ≡ Prod.map (Vec.map f) (map f) (splitAt n xs)
106+
splitAt n (map f xs) ≡ Product.map (Vec.map f) (map f) (splitAt n xs)
107107
splitAt-map zero f xs = P.refl
108108
splitAt-map (suc n) f (x ∷ xs) =
109-
P.cong (Prod.map₁ (f x Vec.∷_)) (splitAt-map n f (xs .force))
109+
P.cong (Product.map₁ (f x Vec.∷_)) (splitAt-map n f (xs .force))
110110

111111
------------------------------------------------------------------------
112112
-- iterate

src/Data/Container/Core.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99
module Data.Container.Core where
1010

1111
open import Level
12-
open import Data.Product.Base as Prod using (Σ-syntax)
12+
open import Data.Product.Base as Product using (Σ-syntax)
1313
open import Function.Base
1414
open import Function using (Inverse; _↔_)
1515
open import Relation.Unary using (Pred; _⊆_)
@@ -33,7 +33,7 @@ open Container public
3333

3434
map : {s p x y} {C : Container s p} {X : Set x} {Y : Set y}
3535
(X Y) ⟦ C ⟧ X ⟦ C ⟧ Y
36-
map f = Prod.map₂ (f ∘_)
36+
map f = Product.map₂ (f ∘_)
3737

3838
-- Representation of container morphisms.
3939

@@ -47,7 +47,7 @@ record _⇒_ {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Containe
4747
position : {s} Position C₂ (shape s) Position C₁ s
4848

4949
⟪_⟫ : {x} {X : Set x} ⟦ C₁ ⟧ X ⟦ C₂ ⟧ X
50-
⟪_⟫ = Prod.map shape (_∘′ position)
50+
⟪_⟫ = Product.map shape (_∘′ position)
5151

5252
open _⇒_ public
5353

src/Data/Fin/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ open import Data.Nat.Base as ℕ
2323
import Data.Nat.Properties as ℕ
2424
open import Data.Nat.Solver
2525
open import Data.Unit using (⊤; tt)
26-
open import Data.Product.Base as Prod
26+
open import Data.Product.Base as Product
2727
using (∃; ∃₂; _×_; _,_; map; proj₁; proj₂; uncurry; <_,_>)
2828
open import Data.Product.Properties using (,-injective)
2929
open import Data.Product.Algebra using (×-cong)
@@ -644,7 +644,7 @@ splitAt-≥ (suc m) (suc i) i≥m = cong (Sum.map suc id) (splitAt-≥ m i (ℕ.
644644
remQuot-combine : {n k} (i : Fin n) j remQuot k (combine i j) ≡ (i , j)
645645
remQuot-combine {suc n} {k} zero j rewrite splitAt-↑ˡ k j (n ℕ.* k) = refl
646646
remQuot-combine {suc n} {k} (suc i) j rewrite splitAt-↑ʳ k (n ℕ.* k) (combine i j) =
647-
cong (Prod.map₁ suc) (remQuot-combine i j)
647+
cong (Product.map₁ suc) (remQuot-combine i j)
648648

649649
combine-remQuot : {n} k (i : Fin (n ℕ.* k)) uncurry combine (remQuot {n} k i) ≡ i
650650
combine-remQuot {suc n} k i with splitAt k i in eq

src/Data/List/Base.agda

+7-7
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ open import Data.Bool.Base as Bool
1717
open import Data.Fin.Base using (Fin; zero; suc)
1818
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′)
1919
open import Data.Nat.Base as ℕ using (ℕ; zero; suc; _+_; _*_ ; _≤_ ; s≤s)
20-
open import Data.Product.Base as Prod using (_×_; _,_; map₁; map₂′)
20+
open import Data.Product.Base as Product using (_×_; _,_; map₁; map₂′)
2121
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
2222
open import Data.These.Base as These using (These; this; that; these)
2323
open import Function.Base
@@ -96,13 +96,13 @@ zipWith f _ _ = []
9696
unalignWith : (A These B C) List A List B × List C
9797
unalignWith f [] = [] , []
9898
unalignWith f (a ∷ as) with f a
99-
... | this b = Prod.map₁ (b ∷_) (unalignWith f as)
100-
... | that c = Prod.map₂ (c ∷_) (unalignWith f as)
101-
... | these b c = Prod.map (b ∷_) (c ∷_) (unalignWith f as)
99+
... | this b = Product.map₁ (b ∷_) (unalignWith f as)
100+
... | that c = Product.map₂ (c ∷_) (unalignWith f as)
101+
... | these b c = Product.map (b ∷_) (c ∷_) (unalignWith f as)
102102

103103
unzipWith : (A B × C) List A List B × List C
104104
unzipWith f [] = [] , []
105-
unzipWith f (xy ∷ xys) = Prod.zip _∷_ _∷_ (f xy) (unzipWith f xys)
105+
unzipWith f (xy ∷ xys) = Product.zip _∷_ _∷_ (f xy) (unzipWith f xys)
106106

107107
partitionSumsWith : (A B ⊎ C) List A List B × List C
108108
partitionSumsWith f = unalignWith (These.fromSum ∘′ f)
@@ -340,7 +340,7 @@ drop (suc n) (x ∷ xs) = drop n xs
340340
splitAt : List A List A × List A
341341
splitAt zero xs = ([] , xs)
342342
splitAt (suc n) [] = ([] , [])
343-
splitAt (suc n) (x ∷ xs) = Prod.map₁ (x ∷_) (splitAt n xs)
343+
splitAt (suc n) (x ∷ xs) = Product.map₁ (x ∷_) (splitAt n xs)
344344

345345
removeAt : (xs : List A) Fin (length xs) List A
346346
removeAt (x ∷ xs) zero = xs
@@ -406,7 +406,7 @@ partitionᵇ p = partition (T? ∘ p)
406406
span : {P : Pred A p} Decidable P List A (List A × List A)
407407
span P? [] = ([] , [])
408408
span P? ys@(x ∷ xs) with does (P? x)
409-
... | true = Prod.map (x ∷_) id (span P? xs)
409+
... | true = Product.map (x ∷_) id (span P? xs)
410410
... | false = ([] , ys)
411411

412412

src/Data/List/Membership/Propositional/Properties/Core.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ open import Function.Bundles
1717
open import Data.List.Base using (List)
1818
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
1919
open import Data.List.Membership.Propositional
20-
open import Data.Product.Base as Prod
20+
open import Data.Product.Base as Product
2121
using (_,_; proj₁; proj₂; uncurry′; ∃; _×_)
2222
open import Level using (Level)
2323
open import Relation.Binary.PropositionalEquality.Core as P
@@ -42,7 +42,7 @@ map∘find (there p) hyp = P.cong there (map∘find p hyp)
4242

4343
find∘map : {P : Pred A p} {Q : Pred A q}
4444
{xs : List A} (p : Any P xs) (f : P ⊆ Q)
45-
find (Any.map f p) ≡ Prod.map id (Prod.map id f) (find p)
45+
find (Any.map f p) ≡ Product.map id (Product.map id f) (find p)
4646
find∘map (here p) f = refl
4747
find∘map (there p) f rewrite find∘map p f = refl
4848

src/Data/List/Membership/Setoid.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ open import Function.Base using (_∘_; id; flip)
1515
open import Data.List.Base as List using (List; []; _∷_; length; lookup)
1616
open import Data.List.Relation.Unary.Any as Any
1717
using (Any; index; map; here; there)
18-
open import Data.Product.Base as Prod using (∃; _×_; _,_)
18+
open import Data.Product.Base as Product using (∃; _×_; _,_)
1919
open import Relation.Unary using (Pred)
2020
open import Relation.Nullary.Negation using (¬_)
2121

@@ -50,7 +50,7 @@ module _ {p} {P : Pred A p} where
5050

5151
find : {xs} Any P xs λ x x ∈ xs × P x
5252
find (here px) = (_ , here refl , px)
53-
find (there pxs) = Prod.map id (Prod.map there id) (find pxs)
53+
find (there pxs) = Product.map id (Product.map there id) (find pxs)
5454

5555
lose : P Respects _≈_ {x xs} x ∈ xs P x Any P xs
5656
lose resp x∈xs px = map (flip resp px) x∈xs

src/Data/List/Membership/Setoid/Properties.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -21,7 +21,7 @@ import Data.List.Relation.Binary.Equality.Setoid as Equality
2121
import Data.List.Relation.Unary.Unique.Setoid as Unique
2222
open import Data.Nat.Base using (suc; z≤n; s≤s; _≤_; _<_)
2323
open import Data.Nat.Properties using (≤-trans; n≤1+n)
24-
open import Data.Product.Base as Prod using (∃; _×_; _,_ ; ∃₂; proj₁; proj₂)
24+
open import Data.Product.Base as Product using (∃; _×_; _,_ ; ∃₂; proj₁; proj₂)
2525
open import Data.Product.Relation.Binary.Pointwise.NonDependent using (_×ₛ_)
2626
open import Data.Sum.Base using (_⊎_; inj₁; inj₂; [_,_]′)
2727
open import Function.Base using (_$_; flip; _∘_; _∘′_; id)
@@ -342,10 +342,10 @@ module _ (S : Setoid c ℓ) {P : Pred (Carrier S) p}
342342

343343
∈-filter⁻ : {v xs} v ∈ filter P? xs v ∈ xs × P v
344344
∈-filter⁻ {xs = x ∷ xs} v∈f[x∷xs] with P? x
345-
... | false because _ = Prod.map there id (∈-filter⁻ v∈f[x∷xs])
345+
... | false because _ = Product.map there id (∈-filter⁻ v∈f[x∷xs])
346346
... | true because [Px] with v∈f[x∷xs]
347347
... | here v≈x = here v≈x , resp (sym v≈x) (invert [Px])
348-
... | there v∈fxs = Prod.map there id (∈-filter⁻ v∈fxs)
348+
... | there v∈fxs = Product.map there id (∈-filter⁻ v∈fxs)
349349

350350
------------------------------------------------------------------------
351351
-- derun and deduplicate

src/Data/List/Nary/NonDependent.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ module Data.List.Nary.NonDependent where
1010

1111
open import Data.Nat.Base using (zero; suc)
1212
open import Data.List.Base as List using (List; []; _∷_)
13-
open import Data.Product.Base as Prod using (_,_)
13+
open import Data.Product.Base as Product using (_,_)
1414
open import Data.Product.Nary.NonDependent using (Product)
1515
open import Function.Base using ()
1616
open import Function.Nary.NonDependent.Base
@@ -37,7 +37,7 @@ zipWith : ∀ n {ls} {as : Sets n ls} {r} {R : Set r} →
3737
zipWith 0 f = []
3838
zipWith 1 f xs = List.map f xs
3939
zipWith (suc n@(suc _)) f xs ys =
40-
zipWith n (Prod.uncurry f) (List.zipWith _,_ xs ys)
40+
zipWith n (Product.uncurry f) (List.zipWith _,_ xs ys)
4141

4242
unzipWith : n {ls} {as : Sets n ls} {a} {A : Set a}
4343
(A Product n as) (List A Product n (List <$> as))

0 commit comments

Comments
 (0)