99
1010{-# OPTIONS --cubical-compatible --safe #-}
1111
12- open import Data.Product.Base as Prod
12+ open import Data.Product.Base as Product
1313open import Relation.Binary.Core
1414
1515module Algebra.Construct.Subst.Equality
@@ -45,13 +45,13 @@ sel : ∀ {∙} → Selective ≈₁ ∙ → Selective ≈₂ ∙
4545sel sel x y = Sum.map to to (sel x y)
4646
4747identity : ∀ {∙ e} → Identity ≈₁ e ∙ → Identity ≈₂ e ∙
48- identity = Prod .map (to ∘_) (to ∘_)
48+ identity = Product .map (to ∘_) (to ∘_)
4949
5050inverse : ∀ {∙ e ⁻¹} → Inverse ≈₁ ⁻¹ ∙ e → Inverse ≈₂ ⁻¹ ∙ e
51- inverse = Prod .map (to ∘_) (to ∘_)
51+ inverse = Product .map (to ∘_) (to ∘_)
5252
5353absorptive : ∀ {∙ ◦} → Absorptive ≈₁ ∙ ◦ → Absorptive ≈₂ ∙ ◦
54- absorptive = Prod .map (λ f x y → to (f x y)) (λ f x y → to (f x y))
54+ absorptive = Product .map (λ f x y → to (f x y)) (λ f x y → to (f x y))
5555
5656distribˡ : ∀ {∙ ◦} → _DistributesOverˡ_ ≈₁ ∙ ◦ → _DistributesOverˡ_ ≈₂ ∙ ◦
5757distribˡ distribˡ x y z = to (distribˡ x y z)
@@ -60,7 +60,7 @@ distribʳ : ∀ {∙ ◦} → _DistributesOverʳ_ ≈₁ ∙ ◦ → _Distribute
6060distribʳ distribʳ x y z = to (distribʳ x y z)
6161
6262distrib : ∀ {∙ ◦} → _DistributesOver_ ≈₁ ∙ ◦ → _DistributesOver_ ≈₂ ∙ ◦
63- distrib {∙} {◦} = Prod .map (distribˡ {∙} {◦}) (distribʳ {∙} {◦})
63+ distrib {∙} {◦} = Product .map (distribˡ {∙} {◦}) (distribʳ {∙} {◦})
6464
6565------------------------------------------------------------------------
6666-- Structures
@@ -92,7 +92,7 @@ isSelectiveMagma S = record
9292isMonoid : ∀ {∙ ε} → IsMonoid ≈₁ ∙ ε → IsMonoid ≈₂ ∙ ε
9393isMonoid S = record
9494 { isSemigroup = isSemigroup S.isSemigroup
95- ; identity = Prod .map (to ∘_) (to ∘_) S.identity
95+ ; identity = Product .map (to ∘_) (to ∘_) S.identity
9696 } where module S = IsMonoid S
9797
9898isCommutativeMonoid : ∀ {∙ ε} →
@@ -113,7 +113,7 @@ isIdempotentCommutativeMonoid {∙} S = record
113113isGroup : ∀ {∙ ε ⁻¹} → IsGroup ≈₁ ∙ ε ⁻¹ → IsGroup ≈₂ ∙ ε ⁻¹
114114isGroup S = record
115115 { isMonoid = isMonoid S.isMonoid
116- ; inverse = Prod .map (to ∘_) (to ∘_) S.inverse
116+ ; inverse = Product .map (to ∘_) (to ∘_) S.inverse
117117 ; ⁻¹-cong = cong₁ S.⁻¹-cong
118118 } where module S = IsGroup S
119119
@@ -141,7 +141,7 @@ isSemiringWithoutOne {+} {*} S = record
141141 ; *-cong = cong₂ S.*-cong
142142 ; *-assoc = assoc {*} S.*-assoc
143143 ; distrib = distrib {*} {+} S.distrib
144- ; zero = Prod .map (to ∘_) (to ∘_) S.zero
144+ ; zero = Product .map (to ∘_) (to ∘_) S.zero
145145 } where module S = IsSemiringWithoutOne S
146146
147147isCommutativeSemiringWithoutOne : ∀ {+ * 0#} →
0 commit comments