File tree Expand file tree Collapse file tree 2 files changed +13
-3
lines changed Expand file tree Collapse file tree 2 files changed +13
-3
lines changed Original file line number Diff line number Diff line change @@ -171,6 +171,7 @@ module _ (commutativeSemiring : CommutativeSemiring r ℓr)
171
171
: Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where
172
172
field
173
173
isBisemimodule : IsBisemimodule semiring semiring ≈ᴹ +ᴹ 0ᴹ *ₗ *ᵣ
174
+ *ₗ-*ᵣ-comm : ∀ x m → ≈ᴹ (*ₗ x m) (*ᵣ m x)
174
175
175
176
open IsBisemimodule isBisemimodule public
176
177
@@ -285,8 +286,9 @@ module _ (commutativeRing : CommutativeRing r ℓr)
285
286
record IsModule (*ₗ : Opₗ R M) (*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where
286
287
field
287
288
isBimodule : IsBimodule ring ring ≈ᴹ +ᴹ 0ᴹ -ᴹ *ₗ *ᵣ
289
+ *ₗ-*ᵣ-comm : ∀ x m → ≈ᴹ (*ₗ x m) (*ᵣ m x)
288
290
289
291
open IsBimodule isBimodule public
290
292
291
293
isSemimodule : IsSemimodule commutativeSemiring ≈ᴹ +ᴹ 0ᴹ *ₗ *ᵣ
292
- isSemimodule = record { isBisemimodule = isBisemimodule }
294
+ isSemimodule = record { isBisemimodule = isBisemimodule; *ₗ-*ᵣ-comm = *ₗ-*ᵣ-comm }
Original file line number Diff line number Diff line change @@ -55,7 +55,10 @@ module _ (commutativeSemiring : CommutativeSemiring r ℓr) where
55
55
}
56
56
57
57
isSemimodule : IsSemimodule commutativeSemiring ≈ᴹ +ᴹ 0ᴹ *ₗ (flip *ₗ)
58
- isSemimodule = record { isBisemimodule = isBisemimodule }
58
+ isSemimodule = record
59
+ { isBisemimodule = isBisemimodule
60
+ ; *ₗ-*ᵣ-comm = λ _ _ → ≈ᴹ-refl
61
+ }
59
62
60
63
-- Similarly, a right semimodule over a commutative semiring
61
64
-- is already a semimodule.
@@ -86,7 +89,10 @@ module _ (commutativeSemiring : CommutativeSemiring r ℓr) where
86
89
}
87
90
88
91
isSemimodule : IsSemimodule commutativeSemiring ≈ᴹ +ᴹ 0ᴹ (flip *ᵣ) *ᵣ
89
- isSemimodule = record { isBisemimodule = isBisemimodule }
92
+ isSemimodule = record
93
+ { isBisemimodule = isBisemimodule
94
+ ; *ₗ-*ᵣ-comm = λ _ _ → ≈ᴹ-refl
95
+ }
90
96
91
97
92
98
module _ (commutativeRing : CommutativeRing r ℓr) where
@@ -111,6 +117,7 @@ module _ (commutativeRing : CommutativeRing r ℓr) where
111
117
; -ᴹ‿cong = -ᴹ‿cong
112
118
; -ᴹ‿inverse = -ᴹ‿inverse
113
119
}
120
+ ; *ₗ-*ᵣ-comm = λ _ _ → ≈ᴹ-refl
114
121
}
115
122
116
123
-- Similarly, a right module over a commutative ring is already a module.
@@ -132,4 +139,5 @@ module _ (commutativeRing : CommutativeRing r ℓr) where
132
139
; -ᴹ‿cong = -ᴹ‿cong
133
140
; -ᴹ‿inverse = -ᴹ‿inverse
134
141
}
142
+ ; *ₗ-*ᵣ-comm = λ _ _ → ≈ᴹ-refl
135
143
}
You can’t perform that action at this time.
0 commit comments