diff --git a/CHANGELOG.md b/CHANGELOG.md index 2959d3d6ce..7386461191 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -25,6 +25,8 @@ Non-backwards compatible changes significantly faster. However, its reduction behaviour on open terms may have changed. +* [issue #2547](https://github.com/agda/agda-stdlib/issues/2547) The names of the *implicit* binders in the following definitions have been rectified to be consistent with those in the rest of `Relation.Binary.Definitions`: `Transitive`, `Antisym`, and `Antisymmetric`. + Minor improvements ------------------ diff --git a/doc/README/Data/Container/Indexed/MultiSortedAlgebraExample.agda b/doc/README/Data/Container/Indexed/MultiSortedAlgebraExample.agda index 0c466c932c..a8bad10f32 100644 --- a/doc/README/Data/Container/Indexed/MultiSortedAlgebraExample.agda +++ b/doc/README/Data/Container/Indexed/MultiSortedAlgebraExample.agda @@ -335,7 +335,7 @@ module _ (Sort : Set ℓˢ) (Ops : Container Sort Sort ℓᵒ ℓᵃ) where {x = t} {y = t'} (sound e) sound (trans {t₁ = t₁} {t₂ = t₂} {t₃ = t₃} e e') = isEquiv {M = M} .IsEquivalence.trans - {i = t₁} {j = t₂} {k = t₃} (sound e) (sound e') + {x = t₁} {y = t₂} {z = t₃} (sound e) (sound e') ------------------------------------------------------------------------ diff --git a/src/Algebra/Construct/Initial.agda b/src/Algebra/Construct/Initial.agda index ce60096210..8a726b838a 100644 --- a/src/Algebra/Construct/Initial.agda +++ b/src/Algebra/Construct/Initial.agda @@ -58,7 +58,7 @@ module ℤero where sym {x = ()} trans : Transitive _≈_ - trans {i = ()} + trans {x = ()} ∙-cong : Congruent₂ _≈_ _∙_ ∙-cong {x = ()} diff --git a/src/Data/Container/Indexed/WithK.agda b/src/Data/Container/Indexed/WithK.agda index 3ec22ce240..d30e9a24c4 100644 --- a/src/Data/Container/Indexed/WithK.agda +++ b/src/Data/Container/Indexed/WithK.agda @@ -54,7 +54,7 @@ setoid C X = record ; isEquivalence = record { refl = refl , refl , λ { r .r refl → X.refl } ; sym = sym - ; trans = λ { {_} {i = xs} {ys} {zs} → trans {_} {i = xs} {ys} {zs} } + ; trans = λ { {_} {x = xs} {ys} {zs} → trans {_} {x = xs} {ys} {zs} } } } where diff --git a/src/Data/Fin/Subset/Properties.agda b/src/Data/Fin/Subset/Properties.agda index 1dd0847d30..64ecf1a605 100644 --- a/src/Data/Fin/Subset/Properties.agda +++ b/src/Data/Fin/Subset/Properties.agda @@ -218,8 +218,8 @@ x∉⁅y⁆⇒x≢y x∉⁅x⁆ refl = x∉⁅x⁆ (x∈⁅x⁆ _) ⊆-trans p⊆q q⊆r x∈p = q⊆r (p⊆q x∈p) ⊆-antisym : Antisymmetric {A = Subset n} _≡_ _⊆_ -⊆-antisym {i = []} {[]} p⊆q q⊆p = refl -⊆-antisym {i = x ∷ xs} {y ∷ ys} p⊆q q⊆p with x | y +⊆-antisym {x = []} {[]} p⊆q q⊆p = refl +⊆-antisym {x = x ∷ xs} {y ∷ ys} p⊆q q⊆p with x | y ... | inside | inside = cong₂ _∷_ refl (⊆-antisym (drop-∷-⊆ p⊆q) (drop-∷-⊆ q⊆p)) ... | inside | outside = contradiction (p⊆q here) λ() ... | outside | inside = contradiction (q⊆p here) λ() diff --git a/src/Data/Fin/Substitution.agda b/src/Data/Fin/Substitution.agda index 1d39b468e1..d0d197bf65 100644 --- a/src/Data/Fin/Substitution.agda +++ b/src/Data/Fin/Substitution.agda @@ -104,7 +104,7 @@ record Application (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ -- Application of multiple substitutions. _/✶_ : T₁ m → Subs T₂ m n → T₁ n - _/✶_ = Star.gfold Fun.id _ (flip _/_) {k = zero} + _/✶_ = Star.gfold Fun.id _ (flip _/_) {z = zero} -- A combination of the two records above. diff --git a/src/Data/List/Relation/Binary/Infix/Heterogeneous/Properties.agda b/src/Data/List/Relation/Binary/Infix/Heterogeneous/Properties.agda index 6fd10257d3..90f8619140 100644 --- a/src/Data/List/Relation/Binary/Infix/Heterogeneous/Properties.agda +++ b/src/Data/List/Relation/Binary/Infix/Heterogeneous/Properties.agda @@ -99,17 +99,17 @@ module _ {c t} {C : Set c} {T : REL A C t} where antisym : Antisym R S T → Antisym (Infix R) (Infix S) (Pointwise T) antisym asym (here p) (here q) = Prefix.antisym asym p q - antisym asym {i = a ∷ as} {j = bs} p@(here _) (there q) - = contradiction (begin-strict + antisym asym {x = a ∷ as} {y = bs} p@(here _) (there q) + = contradiction (begin-strict length as <⟨ length-mono p ⟩ length bs ≤⟨ length-mono q ⟩ length as ∎) (ℕ.<-irrefl refl) where open ℕ.≤-Reasoning - antisym asym {i = as} {j = b ∷ bs} (there p) q@(here _) + antisym asym {x = as} {y = b ∷ bs} (there p) q@(here _) = contradiction (begin-strict length bs <⟨ length-mono q ⟩ length as ≤⟨ length-mono p ⟩ length bs ∎) (ℕ.<-irrefl refl) where open ℕ.≤-Reasoning - antisym asym {i = a ∷ as} {j = b ∷ bs} (there p) (there q) + antisym asym {x = a ∷ as} {y = b ∷ bs} (there p) (there q) = contradiction (begin-strict length as <⟨ length-mono p ⟩ length bs <⟨ length-mono q ⟩ diff --git a/src/Data/Tree/AVL/Map/Membership/Propositional/Properties.agda b/src/Data/Tree/AVL/Map/Membership/Propositional/Properties.agda index 5e472cfe2b..52dc763233 100644 --- a/src/Data/Tree/AVL/Map/Membership/Propositional/Properties.agda +++ b/src/Data/Tree/AVL/Map/Membership/Propositional/Properties.agda @@ -57,7 +57,7 @@ private kx : Key × V ≈ₖᵥ-trans : Transitive (_≈ₖᵥ_ {V = V}) -≈ₖᵥ-trans {i = i} {k = k} = ×-transitive Eq.trans ≡-trans {i = i} {k = k} +≈ₖᵥ-trans {x = x} {z = z} = ×-transitive Eq.trans ≡-trans {x = x} {z = z} ≈ₖᵥ-sym : Symmetric (_≈ₖᵥ_ {V = V}) ≈ₖᵥ-sym {x = x} {y = y} = ×-symmetric sym ≡-sym {x} {y} diff --git a/src/Data/Vec/Functional/Relation/Binary/Permutation/Properties.agda b/src/Data/Vec/Functional/Relation/Binary/Permutation/Properties.agda index 83d65ab5bb..22c54abb40 100644 --- a/src/Data/Vec/Functional/Relation/Binary/Permutation/Properties.agda +++ b/src/Data/Vec/Functional/Relation/Binary/Permutation/Properties.agda @@ -58,7 +58,7 @@ isIndexedEquivalence {A = A} = record { refl = ↭-refl ; sym = ↭-sym ; trans = λ {n₁ n₂ n₃} {xs : Vector A n₁} {ys : Vector A n₂} {zs : Vector A n₃} - xs↭ys ys↭zs → ↭-trans {i = n₁} {i = xs} xs↭ys ys↭zs + xs↭ys ys↭zs → ↭-trans {i = n₁} {x = xs} xs↭ys ys↭zs } ------------------------------------------------------------------------ diff --git a/src/Relation/Binary/Consequences.agda b/src/Relation/Binary/Consequences.agda index 9add6af3a0..aef3e8351c 100644 --- a/src/Relation/Binary/Consequences.agda +++ b/src/Relation/Binary/Consequences.agda @@ -54,8 +54,7 @@ module _ {_∼_ : Rel A ℓ} where -- N.B. the implicit arguments to Cotransitive are permuted w.r.t. -- those of Transitive cotrans⇒¬-trans : Cotransitive _∼_ → Transitive (¬_ ∘₂ _∼_) - cotrans⇒¬-trans cotrans {j = z} x≁z z≁y x∼y = - [ x≁z , z≁y ]′ (cotrans x∼y z) + cotrans⇒¬-trans cotrans x≁z z≁y x∼y = [ x≁z , z≁y ]′ (cotrans x∼y _) ------------------------------------------------------------------------ -- Proofs for Irreflexive relations diff --git a/src/Relation/Binary/Definitions.agda b/src/Relation/Binary/Definitions.agda index 55906c5b8d..b542da2a8c 100644 --- a/src/Relation/Binary/Definitions.agda +++ b/src/Relation/Binary/Definitions.agda @@ -53,7 +53,7 @@ Symmetric _∼_ = Sym _∼_ _∼_ -- Generalised transitivity. Trans : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ -Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k +Trans P Q R = ∀ {x y z} → P x y → Q y z → R x z RightTrans : REL A B ℓ₁ → REL B B ℓ₂ → Set _ RightTrans R S = Trans R S R @@ -64,7 +64,7 @@ LeftTrans S R = Trans S R R -- A flipped variant of generalised transitivity. TransFlip : REL A B ℓ₁ → REL B C ℓ₂ → REL A C ℓ₃ → Set _ -TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k +TransFlip P Q R = ∀ {x y z} → Q y z → P x y → R x z -- Transitivity. @@ -74,7 +74,7 @@ Transitive _∼_ = Trans _∼_ _∼_ _∼_ -- Generalised antisymmetry Antisym : REL A B ℓ₁ → REL B A ℓ₂ → REL A B ℓ₃ → Set _ -Antisym R S E = ∀ {i j} → R i j → S j i → E i j +Antisym R S E = ∀ {x y} → R x y → S y x → E x y -- Antisymmetry.