diff --git a/src/Data/List/Relation/Binary/Lex/Core.agda b/src/Data/List/Relation/Binary/Lex/Core.agda index 0b3e821194..6b1d65b857 100644 --- a/src/Data/List/Relation/Binary/Lex/Core.agda +++ b/src/Data/List/Relation/Binary/Lex/Core.agda @@ -8,13 +8,13 @@ module Data.List.Relation.Binary.Lex.Core where -open import Data.Empty using (⊥; ⊥-elim) -open import Data.Unit.Base using (⊤; tt) +open import Data.Empty using (⊥) +open import Data.Unit.Base using (⊤) open import Data.Product.Base using (_×_; _,_; proj₁; proj₂; uncurry) open import Data.List.Base using (List; []; _∷_) open import Function.Base using (_∘_; flip; id) open import Level using (Level; _⊔_) -open import Relation.Nullary.Negation using (¬_) +open import Relation.Nullary.Negation.Core using (¬_) open import Relation.Binary.Core using (Rel) open import Data.List.Relation.Binary.Pointwise.Base using (Pointwise; []; _∷_; head; tail) diff --git a/src/Data/List/Relation/Binary/Lex/Strict.agda b/src/Data/List/Relation/Binary/Lex/Strict.agda index 277996594f..26f05b6878 100644 --- a/src/Data/List/Relation/Binary/Lex/Strict.agda +++ b/src/Data/List/Relation/Binary/Lex/Strict.agda @@ -11,8 +11,6 @@ module Data.List.Relation.Binary.Lex.Strict where -open import Data.Empty using (⊥) -open import Data.Unit.Base using (⊤; tt) open import Function.Base using (_∘_; id) open import Data.Product.Base using (_,_) open import Data.Sum.Base using (inj₁; inj₂) @@ -146,7 +144,7 @@ module _ {a ℓ₁ ℓ₂} {A : Set a} where ≤-reflexive : (_≈_ : Rel A ℓ₁) (_≺_ : Rel A ℓ₂) → Pointwise _≈_ ⇒ Lex-≤ _≈_ _≺_ - ≤-reflexive _≈_ _≺_ [] = base tt + ≤-reflexive _≈_ _≺_ [] = base _ ≤-reflexive _≈_ _≺_ (x≈y ∷ xs≈ys) = next x≈y (≤-reflexive _≈_ _≺_ xs≈ys) @@ -168,7 +166,7 @@ module _ {a ℓ₁ ℓ₂} {A : Set a} where -- the following lemma. ≤-total : Symmetric _≈_ → Trichotomous _≈_ _≺_ → Total _≤_ - ≤-total _ _ [] [] = inj₁ (base tt) + ≤-total _ _ [] [] = inj₁ (base _) ≤-total _ _ [] (x ∷ xs) = inj₁ halt ≤-total _ _ (x ∷ xs) [] = inj₂ halt ≤-total sym tri (x ∷ xs) (y ∷ ys) with tri x y @@ -179,7 +177,7 @@ module _ {a ℓ₁ ℓ₂} {A : Set a} where ... | inj₂ ys≲xs = inj₂ (next (sym x≈y) ys≲xs) ≤-decidable : Decidable _≈_ → Decidable _≺_ → Decidable _≤_ - ≤-decidable = Core.decidable (yes tt) + ≤-decidable = Core.decidable (yes _) ≤-respects₂ : IsEquivalence _≈_ → _≺_ Respects₂ _≈_ → _≤_ Respects₂ _≋_ diff --git a/src/Data/Vec/Relation/Binary/Lex/Core.agda b/src/Data/Vec/Relation/Binary/Lex/Core.agda index df2c2b7e7c..6e892ece02 100644 --- a/src/Data/Vec/Relation/Binary/Lex/Core.agda +++ b/src/Data/Vec/Relation/Binary/Lex/Core.agda @@ -8,7 +8,6 @@ module Data.Vec.Relation.Binary.Lex.Core {a} {A : Set a} where -open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat.Base using (ℕ; suc) import Data.Nat.Properties as ℕ using (_≟_; ≡-irrelevant) open import Data.Product.Base using (_×_; _,_; proj₁; proj₂; uncurry) @@ -27,7 +26,7 @@ open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_; refl; cong) import Relation.Nullary as Nullary open import Relation.Nullary.Decidable as Dec using (Dec; yes; no; _×-dec_; _⊎-dec_) -open import Relation.Nullary.Negation +open import Relation.Nullary.Negation.Core using (¬_; contradiction) private variable @@ -114,9 +113,9 @@ module _ {P : Set} {_≈_ : Rel A ℓ₁} {_≺_ : Rel A ℓ₂} where antisym : ∀ {n} → Antisymmetric (_≋_ {n}) (_<ₗₑₓ_) antisym (base _) (base _) = [] - antisym (this x≺y m≡n) (this y≺x n≡m) = ⊥-elim (≺-asym x≺y y≺x) - antisym (this x≺y m≡n) (next y≈x ys