forked from ZhiningLiu1998/self-paced-ensemble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanonical_ensemble.py
765 lines (666 loc) · 30.4 KB
/
canonical_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 13 14:32:27 2019
@author: v-zhinli
mailto: [email protected] / [email protected]
"""
"""
IMPORTANT!
The implementation of SMOTE/SMOTEBoost/RUSBoost was obtained from
imbalanced-algorithms: https://github.com/dialnd/imbalanced-algorithms
We have to stress that, according to our tests, the performance
of our baseline method implementation is FAR SUPERIOR to the
implementation in the imblearn package.
imblearn package: https://github.com/scikit-learn-contrib/imbalanced-learn
"""
from collections import Counter
import numpy as np
from sklearn.base import is_regressor
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble.forest import BaseForest
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import normalize
from sklearn.tree.tree import BaseDecisionTree
from sklearn.utils import check_random_state
from sklearn.utils import check_X_y
from sklearn.utils import check_array
from sklearn.preprocessing import binarize
class SMOTE(object):
"""Implementation of Synthetic Minority Over-Sampling Technique (SMOTE).
SMOTE performs oversampling of the minority class by picking target
minority class samples and their nearest minority class neighbors and
generating new samples that linearly combine features of each target
sample with features of its selected minority class neighbors [1].
Parameters
----------
k_neighbors : int, optional (default=5)
Number of nearest neighbors.
random_state : int or None, optional (default=None)
If int, random_state is the seed used by the random number generator.
If None, the random number generator is the RandomState instance used
by np.random.
References
----------
.. [1] N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. Kegelmeyer. "SMOTE:
Synthetic Minority Over-Sampling Technique." Journal of Artificial
Intelligence Research (JAIR), 2002.
"""
def __init__(self, k_neighbors=5, random_state=None):
self.k = k_neighbors
self.random_state = random_state
def sample(self, n_samples):
"""Generate samples.
Parameters
----------
n_samples : int
Number of new synthetic samples.
Returns
-------
S : array, shape = [n_samples, n_features]
Returns synthetic samples.
"""
np.random.seed(seed=self.random_state)
S = np.zeros(shape=(n_samples, self.n_features))
# Calculate synthetic samples.
for i in range(n_samples):
j = np.random.randint(0, self.X.shape[0])
# Find the NN for each sample.
# Exclude the sample itself.
nn = self.neigh.kneighbors(self.X[j].reshape(1, -1),
return_distance=False)[:, 1:]
nn_index = np.random.choice(nn[0])
dif = self.X[nn_index] - self.X[j]
gap = np.random.random()
S[i, :] = self.X[j, :] + gap * dif[:]
return S
def fit(self, X):
"""Train model based on input data.
Parameters
----------
X : array-like, shape = [n_minority_samples, n_features]
Holds the minority samples.
"""
self.X = X
self.n_minority_samples, self.n_features = self.X.shape
# Learn nearest neighbors.
self.neigh = NearestNeighbors(n_neighbors=self.k + 1)
self.neigh.fit(self.X)
return self
class SMOTEBoost(AdaBoostClassifier):
"""Implementation of SMOTEBoost.
SMOTEBoost introduces data sampling into the AdaBoost algorithm by
oversampling the minority class using SMOTE on each boosting iteration [1].
This implementation inherits methods from the scikit-learn
AdaBoostClassifier class, only modifying the `fit` method.
Parameters
----------
n_samples : int, optional (default=100)
Number of new synthetic samples per boosting step.
k_neighbors : int, optional (default=5)
Number of nearest neighbors.
base_estimator : object, optional (default=DecisionTreeClassifier)
The base estimator from which the boosted ensemble is built.
Support for sample weighting is required, as well as proper `classes_`
and `n_classes_` attributes.
n_estimators : int, optional (default=50)
The maximum number of estimators at which boosting is terminated.
In case of perfect fit, the learning procedure is stopped early.
learning_rate : float, optional (default=1.)
Learning rate shrinks the contribution of each classifier by
``learning_rate``. There is a trade-off between ``learning_rate`` and
``n_estimators``.
algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
If 'SAMME.R' then use the SAMME.R real boosting algorithm.
``base_estimator`` must support calculation of class probabilities.
If 'SAMME' then use the SAMME discrete boosting algorithm.
The SAMME.R algorithm typically converges faster than SAMME,
achieving a lower test error with fewer boosting iterations.
random_state : int or None, optional (default=None)
If int, random_state is the seed used by the random number generator.
If None, the random number generator is the RandomState instance used
by np.random.
References
----------
.. [1] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer.
"SMOTEBoost: Improving Prediction of the Minority Class in
Boosting." European Conference on Principles of Data Mining and
Knowledge Discovery (PKDD), 2003.
"""
def __init__(self,
n_samples=100,
k_neighbors=5,
base_estimator=None,
n_estimators=50,
learning_rate=1.,
algorithm='SAMME.R',
random_state=None):
self.n_samples = n_samples
self.algorithm = algorithm
self.smote = SMOTE(k_neighbors=k_neighbors,
random_state=random_state)
super(SMOTEBoost, self).__init__(
base_estimator=base_estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
random_state=random_state)
def fit(self, X, y, sample_weight=None, minority_target=None):
"""Build a boosted classifier/regressor from the training set (X, y),
performing SMOTE during each boosting step.
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is
forced to DTYPE from tree._tree if the base classifier of this
ensemble weighted boosting classifier is a tree or forest.
y : array-like of shape = [n_samples]
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape = [n_samples], optional
Sample weights. If None, the sample weights are initialized to
1 / n_samples.
minority_target : int
Minority class label.
Returns
-------
self : object
Returns self.
Notes
-----
Based on the scikit-learn v0.18 AdaBoostClassifier and
BaseWeightBoosting `fit` methods.
"""
# Check that algorithm is supported.
if self.algorithm not in ('SAMME', 'SAMME.R'):
raise ValueError("algorithm %s is not supported" % self.algorithm)
# Check parameters.
if self.learning_rate <= 0:
raise ValueError("learning_rate must be greater than zero")
if (self.base_estimator is None or
isinstance(self.base_estimator, (BaseDecisionTree,
BaseForest))):
DTYPE = np.float64 # from fast_dict.pxd
dtype = DTYPE
accept_sparse = 'csc'
else:
dtype = None
accept_sparse = ['csr', 'csc']
X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype,
y_numeric=is_regressor(self))
if sample_weight is None:
# Initialize weights to 1 / n_samples.
sample_weight = np.empty(X.shape[0], dtype=np.float64)
sample_weight[:] = 1. / X.shape[0]
else:
sample_weight = check_array(sample_weight, ensure_2d=False)
# Normalize existing weights.
sample_weight = sample_weight / sample_weight.sum(dtype=np.float64)
# Check that the sample weights sum is positive.
if sample_weight.sum() <= 0:
raise ValueError(
"Attempting to fit with a non-positive "
"weighted number of samples.")
if minority_target is None:
# Determine the minority class label.
stats_c_ = Counter(y)
maj_c_ = max(stats_c_, key=stats_c_.get)
min_c_ = min(stats_c_, key=stats_c_.get)
self.minority_target = min_c_
else:
self.minority_target = minority_target
# Check parameters.
self._validate_estimator()
# Clear any previous fit results.
self.estimators_ = []
self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)
random_state = check_random_state(self.random_state)
for iboost in range(self.n_estimators):
# SMOTE step.
X_min = X[np.where(y == self.minority_target)]
self.smote.fit(X_min)
X_syn = self.smote.sample(self.n_samples)
y_syn = np.full(X_syn.shape[0], fill_value=self.minority_target,
dtype=np.int64)
# Normalize synthetic sample weights based on current training set.
sample_weight_syn = np.empty(X_syn.shape[0], dtype=np.float64)
sample_weight_syn[:] = 1. / X.shape[0]
# print ('Boosting Iter: {} n_train: {} n_smote: {}'.format(
# iboost, len(X_min), len(y_syn)))
# Combine the original and synthetic samples.
X = np.vstack((X, X_syn))
y = np.append(y, y_syn)
# Combine the weights.
sample_weight = \
np.append(sample_weight, sample_weight_syn).reshape(-1, 1)
sample_weight = \
np.squeeze(normalize(sample_weight, axis=0, norm='l1'))
# X, y, sample_weight = shuffle(X, y, sample_weight,
# random_state=random_state)
# Boosting step.
sample_weight, estimator_weight, estimator_error = self._boost(
iboost,
X, y,
sample_weight,
random_state)
# Early termination.
if sample_weight is None:
print('sample_weight: {}'.format(sample_weight))
break
self.estimator_weights_[iboost] = estimator_weight
self.estimator_errors_[iboost] = estimator_error
# Stop if error is zero.
# if estimator_error == 0:
# print('error: {}'.format(estimator_error))
# break
sample_weight_sum = np.sum(sample_weight)
# Stop if the sum of sample weights has become non-positive.
if sample_weight_sum <= 0:
print('sample_weight_sum: {}'.format(sample_weight_sum))
break
if iboost < self.n_estimators - 1:
# Normalize.
sample_weight /= sample_weight_sum
return self
class RandomUnderSampler(object):
"""Implementation of random undersampling (RUS).
Undersample the majority class(es) by randomly picking samples with or
without replacement.
Parameters
----------
with_replacement : bool, optional (default=True)
Undersample with replacement.
return_indices : bool, optional (default=False)
Whether or not to return the indices of the samples randomly selected
from the majority class.
random_state : int or None, optional (default=None)
If int, random_state is the seed used by the random number generator.
If None, the random number generator is the RandomState instance used
by np.random.
"""
def __init__(self, with_replacement=True, return_indices=False,
random_state=None):
self.return_indices = return_indices
self.with_replacement = with_replacement
self.random_state = random_state
def sample(self, n_samples):
"""Perform undersampling.
Parameters
----------
n_samples : int
Number of samples to remove.
Returns
-------
S : array, shape = [n_majority_samples - n_samples, n_features]
Returns synthetic samples.
"""
np.random.seed(seed=self.random_state)
if self.n_majority_samples <= n_samples:
n_samples = self.n_majority_samples
idx = np.random.choice(self.n_majority_samples,
# size=self.n_majority_samples - n_samples,
size=self.n_minority_samples,
replace=self.with_replacement)
if self.return_indices:
return (self.X_maj[idx], idx)
else:
return self.X_maj[idx]
def fit(self, X_maj, X_min):
"""Train model based on input data.
Parameters
----------
X : array-like, shape = [n_majority_samples, n_features]
Holds the majority samples.
"""
self.X_maj = X_maj
self.X_min = X_min
self.n_majority_samples, self.n_features = self.X_maj.shape
self.n_minority_samples = self.X_min.shape[0]
return self
import pandas as pd
class RUSBoost(AdaBoostClassifier):
"""Implementation of RUSBoost.
RUSBoost introduces data sampling into the AdaBoost algorithm by
undersampling the majority class using random undersampling (with or
without replacement) on each boosting iteration [1].
This implementation inherits methods from the scikit-learn
AdaBoostClassifier class, only modifying the `fit` method.
Parameters
----------
n_samples : int, optional (default=100)
Number of new synthetic samples per boosting step.
min_ratio : float (default=1.0)
Minimum ratio of majority to minority class samples to generate.
with_replacement : bool, optional (default=True)
Undersample with replacement.
base_estimator : object, optional (default=DecisionTreeClassifier)
The base estimator from which the boosted ensemble is built.
Support for sample weighting is required, as well as proper `classes_`
and `n_classes_` attributes.
n_estimators : int, optional (default=50)
The maximum number of estimators at which boosting is terminated.
In case of perfect fit, the learning procedure is stopped early.
learning_rate : float, optional (default=1.)
Learning rate shrinks the contribution of each classifier by
``learning_rate``. There is a trade-off between ``learning_rate`` and
``n_estimators``.
algorithm : {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
If 'SAMME.R' then use the SAMME.R real boosting algorithm.
``base_estimator`` must support calculation of class probabilities.
If 'SAMME' then use the SAMME discrete boosting algorithm.
The SAMME.R algorithm typically converges faster than SAMME,
achieving a lower test error with fewer boosting iterations.
random_state : int or None, optional (default=None)
If int, random_state is the seed used by the random number generator.
If None, the random number generator is the RandomState instance used
by np.random.
References
----------
.. [1] C. Seiffert, T. M. Khoshgoftaar, J. V. Hulse, and A. Napolitano.
"RUSBoost: Improving Classification Performance when Training Data
is Skewed". International Conference on Pattern Recognition
(ICPR), 2008.
"""
def __init__(self,
n_samples=100,
min_ratio=1.0,
with_replacement=True,
base_estimator=None,
n_estimators=10,
learning_rate=1.,
algorithm='SAMME.R',
random_state=None):
self.n_samples = n_samples
self.min_ratio = min_ratio
self.algorithm = algorithm
self.rus = RandomUnderSampler(with_replacement=with_replacement,
return_indices=True,
random_state=random_state)
super(RUSBoost, self).__init__(
base_estimator=base_estimator,
n_estimators=n_estimators,
learning_rate=learning_rate,
random_state=random_state)
def fit(self, X, y, sample_weight=None, minority_target=None):
"""Build a boosted classifier/regressor from the training set (X, y),
performing random undersampling during each boosting step.
Parameters
----------
X : {array-like, sparse matrix} of shape = [n_samples, n_features]
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR. The dtype is
forced to DTYPE from tree._tree if the base classifier of this
ensemble weighted boosting classifier is a tree or forest.
y : array-like of shape = [n_samples]
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape = [n_samples], optional
Sample weights. If None, the sample weights are initialized to
1 / n_samples.
minority_target : int
Minority class label.
Returns
-------
self : object
Returns self.
Notes
-----
Based on the scikit-learn v0.18 AdaBoostClassifier and
BaseWeightBoosting `fit` methods.
"""
# Check that algorithm is supported.
if self.algorithm not in ('SAMME', 'SAMME.R'):
raise ValueError("algorithm %s is not supported" % self.algorithm)
# Check parameters.
if self.learning_rate <= 0:
raise ValueError("learning_rate must be greater than zero")
if (self.base_estimator is None or
isinstance(self.base_estimator, (BaseDecisionTree,
BaseForest))):
DTYPE = np.float64 # from fast_dict.pxd
dtype = DTYPE
accept_sparse = 'csc'
else:
dtype = None
accept_sparse = ['csr', 'csc']
X, y = check_X_y(X, y, accept_sparse=accept_sparse, dtype=dtype,
y_numeric=is_regressor(self))
if sample_weight is None:
# Initialize weights to 1 / n_samples.
sample_weight = np.empty(X.shape[0], dtype=np.float64)
sample_weight[:] = 1. / X.shape[0]
else:
sample_weight = check_array(sample_weight, ensure_2d=False)
# Normalize existing weights.
sample_weight = sample_weight / sample_weight.sum(dtype=np.float64)
# Check that the sample weights sum is positive.
if sample_weight.sum() <= 0:
raise ValueError(
"Attempting to fit with a non-positive "
"weighted number of samples.")
if minority_target is None:
# Determine the minority class label.
stats_c_ = Counter(y)
maj_c_ = max(stats_c_, key=stats_c_.get)
min_c_ = min(stats_c_, key=stats_c_.get)
self.minority_target = min_c_
else:
self.minority_target = minority_target
# Check parameters.
self._validate_estimator()
# Clear any previous fit results.
self.estimators_ = []
self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)
random_state = check_random_state(self.random_state)
for iboost in range(self.n_estimators):
# Random undersampling step.
X_maj = X[np.where(y != self.minority_target)]
X_min = X[np.where(y == self.minority_target)]
self.rus.fit(X_maj, X_min)
# self.rus.fit(X_maj)
n_maj = X_maj.shape[0]
n_min = X_min.shape[0]
if n_maj - self.n_samples < int(n_min * self.min_ratio):
self.n_samples = n_maj - int(n_min * self.min_ratio)
X_rus, X_idx = self.rus.sample(self.n_samples)
# print ('Boosting Iter: {} X_maj: {} X_rus: {} X_min: {}'.format(
# iboost, len(X_maj), len(X_rus), len(X_min)))
y_rus = y[np.where(y != self.minority_target)][X_idx]
y_min = y[np.where(y == self.minority_target)]
sample_weight_rus = \
sample_weight[np.where(y != self.minority_target)][X_idx]
sample_weight_min = \
sample_weight[np.where(y == self.minority_target)]
# Combine the minority and majority class samples.
X_train = np.vstack((X_rus, X_min))
y_train = np.append(y_rus, y_min)
# Combine the weights.
sample_weight_train = \
np.append(sample_weight_rus, sample_weight_min).reshape(-1, 1)
sample_weight_train = \
np.squeeze(normalize(sample_weight_train, axis=0, norm='l1'))
# Boosting step.
_, estimator_weight_train, estimator_error = self._boost(
iboost,
X_train, y_train,
sample_weight_train,
random_state)
# print(self.estimators_)
y_predict_proba = self.estimators_[-1].predict_proba(X)
y_predict = self.classes_.take(np.argmax(y_predict_proba, axis=1),
axis=0)
# Instances incorrectly classified
incorrect = y_predict != y
# Error fraction
estimator_error = np.mean(
np.average(incorrect, weights=sample_weight, axis=0))
n_classes = self.n_classes_
classes = self.classes_
y_codes = np.array([-1. / (n_classes - 1), 1.])
y_coding = y_codes.take(classes == y[:, np.newaxis])
estimator_weight = (-1. * self.learning_rate
* ((n_classes - 1.) / n_classes)
* (y_coding * (y_predict_proba)).sum(axis=1))
# print(y_predict_proba, y_coding, np.log(y_predict_proba))
if not iboost == self.n_estimators - 1:
# Only boost positive weights
sample_weight *= np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0)))
# print (np.exp(estimator_weight * ((sample_weight > 0) | (estimator_weight < 0))))
# Early termination.
if sample_weight is None:
print('sample_weight: {}'.format(sample_weight))
break
self.estimator_weights_[iboost] = estimator_weight_train
self.estimator_errors_[iboost] = estimator_error
# Stop if error is zero.
# if estimator_error == 0:
# print('error: {}'.format(estimator_error))
# break
sample_weight_sum = np.sum(sample_weight)
# Stop if the sum of sample weights has become non-positive.
if sample_weight_sum <= 0:
print('sample_weight_sum: {}'.format(sample_weight_sum))
break
if iboost < self.n_estimators - 1:
# Normalize.
sample_weight /= sample_weight_sum
return self
import pandas as pd
from imblearn.over_sampling import SMOTE as SMOTE_IMB
from sklearn.tree import DecisionTreeClassifier as DT
class SMOTEBagging():
def __init__(self,
n_samples=100,
min_ratio=1.0,
with_replacement=True,
base_estimator=None,
n_estimators=10,
learning_rate=1.,
algorithm='SAMME.R',
random_state=None):
self.n_estimators = n_estimators
self.model_list = []
def fit(self, X, y):
self.model_list = []
df = pd.DataFrame(X); df['label'] = y
df_maj = df[df['label']==0]; n_maj = len(df_maj)
df_min = df[df['label']==1]; n_min = len(df_min)
cols = df.columns.tolist(); cols.remove('label')
for ibagging in range(self.n_estimators):
b = min(0.1*((ibagging%10)+1), 1)
train_maj = df_maj.sample(frac=b, replace=True)
train_min = df_min.sample(frac=b, replace=True)
# train_maj = df_maj.sample(frac=1/self.n_estimators, replace=True)
# train_min = df_min.sample(frac=1/self.n_estimators, replace=True)
# train_maj = df_maj.sample(n=n_min, replace=True)
# train_min = df_min.sample(frac=1/self.n_estimators, replace=True)
df_k = train_maj.append(train_min)
X_train, y_train = SMOTE_IMB(k_neighbors=min(5, len(train_min)-1)).fit_resample(df_k[cols], df_k['label'])
# print ('Bagging Iter: {} |b: {:.1f}|n_train: {}|n_smote: {}'.format(
# ibagging, b, len(y_train), len(y_train)-len(df_k)))
model = DT().fit(X_train, y_train)
self.model_list.append(model)
return self
def predict_proba(self, X):
y_pred = np.array([model.predict(X) for model in self.model_list]).mean(axis=0)
if y_pred.ndim == 1:
y_pred = y_pred[:, np.newaxis]
if y_pred.shape[1] == 1:
y_pred = np.append(1-y_pred, y_pred, axis=1)
return y_pred
def predict(self, X):
y_pred_binarazed = binarize(self.predict_proba(X)[:,1].reshape(1,-1), threshold=0.5)[0]
return y_pred_binarazed
import pandas as pd
from sklearn.tree import DecisionTreeClassifier as DT
class UnderBagging():
def __init__(self,
n_samples=100,
min_ratio=1.0,
with_replacement=True,
base_estimator=None,
n_estimators=10,
learning_rate=1.,
algorithm='SAMME.R',
random_state=None):
self.n_estimators = n_estimators
self.model_list = []
def fit(self, X, y):
self.model_list = []
df = pd.DataFrame(X); df['label'] = y
df_maj = df[df['label']==0]; n_maj = len(df_maj)
df_min = df[df['label']==1]; n_min = len(df_min)
cols = df.columns.tolist(); cols.remove('label')
for ibagging in range(self.n_estimators):
train_maj = df_maj.sample(n=n_min, replace=True)
train_min = df_min
# print ('Bagging Iter: {} X_maj: {} X_rus: {} X_min: {}'.format(
# ibagging, len(df_maj), len(train_maj), len(train_min)))
df_k = train_maj.append(train_min)
X_train, y_train = df_k[cols], df_k['label']
model = DT().fit(X_train, y_train)
self.model_list.append(model)
return self
def predict_proba(self, X):
y_pred = np.array([model.predict(X) for model in self.model_list]).mean(axis=0)
if y_pred.ndim == 1:
y_pred = y_pred[:, np.newaxis]
if y_pred.shape[1] == 1:
y_pred = np.append(1-y_pred, y_pred, axis=1)
return y_pred
def predict(self, X):
y_pred_binarazed = binarize(self.predict_proba(X)[:,1].reshape(1,-1), threshold=0.5)[0]
return y_pred_binarazed
from sklearn.base import clone
class BalanceCascade():
"""
The implementation of BalanceCascade.
Hyper-parameters:
base_estimator : scikit-learn classifier object
optional (default=DecisionTreeClassifier)
The base estimator from which the ensemble is built.
n_estimators: Number of iterations / estimators
k_bins: Number of hardness bins
"""
def __init__(self, base_estimator=DT(), n_estimators=10, random_seed=None):
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.random_seed = random_seed
self.model_list = []
# Will be set in the fit function
self.feature_cols = None
def _fit_baselearner(self, df_train):
model = clone(self.base_estimator)
return model.fit(df_train[self.feature_cols], df_train['label'])
def fit(self, X, y, print_log=False, visualize=False):
# Initialize majority & minority set
df = pd.DataFrame(X); df['label'] = y
df_maj = df[y==0]; n_maj = df_maj.shape[0]
df_min = df[y==1]; n_min = df_min.shape[0]
self.feature_cols = df.columns.tolist()
self.feature_cols.remove('label')
ir = n_min / n_maj
keep_fp_rate = np.power(ir, 1/(self.n_estimators-1))
# Algorithm start
for ibagging in range(1, self.n_estimators):
df_train = df_maj.sample(n=n_min).append(df_min)
if visualize:
df_train.plot.scatter(x=0, y=1, s=3, c='label', colormap='coolwarm', title='Iter {} training set'.format(ibagging))
# print ('Cascade Iter: {} X_maj: {} X_rus: {} X_min: {}'.format(
# ibagging, len(df_maj), len(df_min), len(df_min)))
self.model_list.append(self._fit_baselearner(df_train))
# drop "easy" majority samples
df_maj['pred_proba'] = self.predict(df_maj[self.feature_cols])
df_maj = df_maj.sort_values(by='pred_proba', ascending=False)[:int(keep_fp_rate*len(df_maj)+1)]
return self
def predict_proba(self, X):
y_pred = np.array([model.predict(X) for model in self.model_list]).mean(axis=0)
if y_pred.ndim == 1:
y_pred = y_pred[:, np.newaxis]
if y_pred.shape[1] == 1:
y_pred = np.append(1-y_pred, y_pred, axis=1)
return y_pred
def predict(self, X):
y_pred_binarazed = binarize(self.predict_proba(X)[:,1].reshape(1,-1), threshold=0.5)[0]
return y_pred_binarazed