forked from ZhiningLiu1998/self-paced-ensemble
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
108 lines (96 loc) · 3.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# -*- coding: utf-8 -*-
"""
Created on Tue May 15 16:22:56 2019
@author: Zhining Liu
mailto: [email protected] / [email protected]
"""
from sklearn.metrics import (
f1_score,
accuracy_score,
precision_recall_fscore_support,
roc_auc_score,
precision_recall_curve,
auc,
roc_curve,
average_precision_score,
matthews_corrcoef,
)
from sklearn import datasets
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
def load_covtype_dataset(subset=0.1, random_state=None):
'''Load & Split training/test covtype dataset.'''
print ('\nDataset used: \t\tForest covertypes from UCI ({:.1%} random subset)'.format(subset))
X, y = datasets.fetch_covtype(return_X_y=True)
y = make_binary_classification_target(y, 7, verbose=True)
X, y = imbalance_random_subset(
X, y, size=0.1, random_state=random_state)
X_train, X_test, y_train, y_test = imbalance_train_test_split(
X, y, test_size=0.2, random_state=random_state)
return X_train, X_test, y_train, y_test
def make_binary_classification_target(y, pos_label, verbose=False):
'''Turn multi-class targets into binary classification targets.'''
pos_idx = (y==pos_label)
y[pos_idx] = 1
y[~pos_idx] = 0
if verbose:
print ('Positive target:\t{}'.format(pos_label))
print ('Imbalance ratio:\t{:.3f}'.format((y==0).sum()/(y==1).sum()))
return y
def imbalance_train_test_split(X, y, test_size, random_state=None):
'''Train/Test split that guarantee same class distribution between split datasets.'''
X_maj = X[y==0]; y_maj = y[y==0]
X_min = X[y==1]; y_min = y[y==1]
X_train_maj, X_test_maj, y_train_maj, y_test_maj = train_test_split(
X_maj, y_maj, test_size=test_size, random_state=random_state)
X_train_min, X_test_min, y_train_min, y_test_min = train_test_split(
X_min, y_min, test_size=test_size, random_state=random_state)
X_train = np.concatenate([X_train_maj, X_train_min])
X_test = np.concatenate([X_test_maj, X_test_min])
y_train = np.concatenate([y_train_maj, y_train_min])
y_test = np.concatenate([y_test_maj, y_test_min])
return X_train, X_test, y_train, y_test
def imbalance_random_subset(X, y, size, random_state=None):
'''Get random subset while guarantee same class distribution.'''
_, X, _, y = imbalance_train_test_split(X, y,
test_size=size, random_state=random_state)
return X, y
def auc_prc(label, y_pred):
'''Compute AUCPRC score.'''
return average_precision_score(label, y_pred)
def f1_optim(label, y_pred):
'''Compute optimal F1 score.'''
y_pred = y_pred.copy()
prec, reca, _ = precision_recall_curve(label, y_pred)
f1s = 2 * (prec * reca) / (prec + reca)
return max(f1s)
def gm_optim(label, y_pred):
'''Compute optimal G-mean score.'''
y_pred = y_pred.copy()
prec, reca, _ = precision_recall_curve(label, y_pred)
gms = np.power((prec*reca), 0.5)
return max(gms)
def mcc_optim(label, y_pred):
'''Compute optimal MCC score.'''
mccs = []
for t in range(100):
y_pred_b = y_pred.copy()
y_pred_b[y_pred_b < 0+t*0.01] = 0
y_pred_b[y_pred_b >= 0+t*0.01] = 1
mcc = matthews_corrcoef(label, y_pred_b)
mccs.append(mcc)
return max(mccs)
def precision_at_recall(label, y_pred, recall):
'''Compute precision at recall.'''
prec, reca, _ = precision_recall_curve(label, y_pred)
idx = np.searchsorted(-reca, -recall, 'right')
return prec[idx - 1]
def recall_at_precision(label, y_pred, precision):
'''Compute recall at precision.'''
prec, reca, _ = precision_recall_curve(label, y_pred)
idx = np.searchsorted(prec, precision, 'right')
return reca[idx]
class Error(Exception):
'''Simple exception.'''
pass