forked from littsk/test_attn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_flux.py
193 lines (164 loc) · 6.42 KB
/
benchmark_flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import logging
import os
from typing import Callable, List, Tuple
import typer
import torch
import torch.nn as nn
import torch._inductor.config as inductor_config
import nexfort
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
os.environ["NEXFORT_FUSE_TIMESTEP_EMBEDDING"] = "0"
os.environ["NEXFORT_FX_FORCE_TRITON_SDPA"] = "1"
#torch.backends.cuda.matmul.allow_tf32 = True
#torch.backends.cudnn.allow_tf32 = True
#torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.set_default_device("cuda")
app = typer.Typer()
def benchmark_torch_function(iters, f, *args, **kwargs):
f(*args, **kwargs)
f(*args, **kwargs)
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for _ in range(iters):
f(*args, **kwargs)
end_event.record()
torch.cuda.synchronize()
# elapsed_time has a resolution of 0.5 microseconds:
# but returns milliseconds, so we need to multiply it to increase resolution
return start_event.elapsed_time(end_event) * 1000 / iters, *f(*args, **kwargs)
class IterationProfiler:
def __init__(self, steps=None):
self.start = None
self.end = None
self.num_iterations = 0
self.steps = steps
def get_iter_per_sec(self):
if self.start is None or self.end is None:
return None
self.end.synchronize()
et = self.start.elapsed_time(self.end)
return self.num_iterations / et * 1000.0
def callback_on_step_end(self, pipe, i, t, callback_kwargs):
if self.start is None:
start = torch.cuda.Event(enable_timing=True)
start.record()
self.start = start
else:
if self.steps is None or i == self.steps - 1:
event = torch.cuda.Event(enable_timing=True)
event.record()
self.end = event
self.num_iterations += 1
return callback_kwargs
def _compile_transformer_backbone(
transformer: nn.Module,
enable_torch_compile: bool,
enable_nexfort: bool,
fullgraph: bool = True,
debug: bool = False,
):
if debug:
os.environ["TORCH_COMPILE_DEBUG"] = "1"
os.environ["TORCH_LOGS"] = "+inductor,dynamo"
inductor_config.debug = True
# Whether to disable a progress bar for autotuning
inductor_config.disable_progress = False
# Whether to enable printing the source code for each future
inductor_config.verbose_progress = True
inductor_config.trace.enabled = True
inductor_config.trace.debug_log = True
inductor_config.trace.info_log = True
# inductor_config.trace.graph_diagram = True # INDUCTOR_POST_FUSION_SVG=1
# inductor_config.trace.draw_orig_fx_graph = True # INDUCTOR_ORIG_FX_SVG=1
# torch._inductor.list_options()
inductor_config.conv_1x1_as_mm = True # treat 1x1 convolutions as matrix muls
inductor_config.max_autotune_gemm_backends = "ATEN,TRITON"
# TORCHINDUCTOR_BENCHMARK_KERNEL: inductor_config.benchmark_kernel
# inductor_config.triton.cudagraphs = False
# Tune the generated Triton kernels at compile time instead of first time they run
# Setting to None means uninitialized
# inductor_config.triton.autotune_at_compile_time = True
inductor_config.cuda.compile_opt_level = "-O3" # default: "-O1"
inductor_config.cuda.use_fast_math = True
inductor_config.coordinate_descent_tuning = True
inductor_config.coordinate_descent_check_all_directions = True
inductor_config.epilogue_fusion = False # do not fuse pointwise ops into matmuls
if enable_torch_compile and enable_nexfort:
logging.error(
f"can't apply --use_torch_compile {enable_torch_compile} and --use_nexfort {enable_nexfort} together."
)
if enable_torch_compile:
if getattr(transformer, "forward") is not None:
optimized_transformer_forward = torch.compile(
getattr(transformer, "forward"),
fullgraph=fullgraph,
backend="inductor",
mode="max-autotune-no-cudagraphs",
)
setattr(transformer, "forward", optimized_transformer_forward)
else:
raise AttributeError(
f"Transformer backbone type: {transformer.__class__.__name__} has no attribute 'forward'"
)
return transformer
@app.command()
def main(
model_id: str = "black-forest-labs/FLUX.1-dev",
height: int = 1024,
width: int = 1024,
diffusion_steps: int = 28,
max_sequence_length: int = 512,
use_torch_compile: bool = True,
fullgraph: bool = True,
use_nexfort: bool = False,
debug: bool = True,
iters: int = 10,
seed: int = 42,
):
pipeline = FluxPipeline.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
)
pipeline.to("cuda")
transformer = getattr(pipeline, "transformer", None)
vae = getattr(pipeline, "vae", None)
transformer.to(memory_format=torch.channels_last)
vae.to(memory_format=torch.channels_last)
if debug:
transformer_params = (
sum(p.numel() for p in pipeline.transformer.parameters() if p.requires_grad)
/ 1e9
)
print(f"Total transformer number of parameters: {transformer_params:.2f}B")
if transformer is not None and use_torch_compile:
pipeline.transformer = _compile_transformer_backbone(
transformer,
enable_torch_compile=use_torch_compile,
enable_nexfort=use_nexfort,
fullgraph=fullgraph,
debug=debug,
)
if use_nexfort:
from nexfort.compilers import transform
pipeline.transformer = transform(pipeline.transformer)
pipeline.text_encoder_2 = transform(pipeline.text_encoder_2)
if vae is not None and use_torch_compile:
pipeline.vae = torch.compile(
vae, mode="max-autotune-no-cudagraphs", fullgraph=True
)
forward_time, _ = benchmark_torch_function(
iters,
pipeline,
height=height,
width=width,
prompt="A tree in the forest",
num_inference_steps=diffusion_steps,
max_sequence_length=max_sequence_length,
guidance_scale=0.0,
generator=torch.Generator(device="cuda").manual_seed(seed),
)
print(f"avg fwd time: {forward_time / 1e6} s")
if __name__ == "__main__":
typer.run(main)