forked from littsk/test_attn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflops.py
262 lines (227 loc) · 7.87 KB
/
flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import math
import platform
import os
import logging
from dataclasses import dataclass, field
from typing import Mapping, Optional, Tuple
import torch
from torch import nn
import torch._inductor.config as inductor_config
import typer
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
from torch.utils.flop_counter import FlopCounterMode
# from torchao.profiler.performance_counter import PerformanceCounterMode
torch.set_default_device("cuda")
app = typer.Typer()
TORCH_DTYPES = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp8": torch.float8_e4m3fn,
}
@dataclass
class DeviceLimit:
name: str = "default" # pattern to match from `torch.cuda.get_device_name()`
source: str = ""
sm: Tuple[int, int] = (0, 0)
# bytes/s
gmem_bandwidth: float = math.inf
# dtype -> TFlop/s
gemm_tflops: Mapping[torch.dtype, float] = field(default_factory=dict)
# For f32, we assume we can use tf32
DEVICE_LIMITS: Tuple[DeviceLimit, ...] = (
DeviceLimit(
"H100",
"https://resources.nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet", # noqa: E501
sm=(9, 0),
gmem_bandwidth=3.35 * (1024**4), # NOTE: PCIe is 2 TB/s
gemm_tflops={
torch.float64: 67,
# NOTE: NVIDIA gives all numbers "with 2:4 sparsity"
# but we want the full GEMM numbers
torch.float32: 989 // 2,
torch.float16: 1979 // 2,
torch.bfloat16: 1979 // 2,
torch.int8: 3958 // 2,
},
),
DeviceLimit(
"A100",
"https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-us-nvidia-1758950-r4-web.pdf", # noqa: E501
sm=(8, 0),
gmem_bandwidth=2 * (1024**4), # NOTE: PCIe is 1.5 TB/s
gemm_tflops={
torch.float64: 19.5,
torch.float32: 156,
torch.float16: 312,
torch.bfloat16: 312,
torch.int8: 624,
},
),
)
@dataclass
class Experiment:
name: str
metric: str
target: float
actual: float
dtype: str
device: str
arch: str # GPU architecture
is_model: bool = False
is_compiled: bool = False
class CudaTimer:
"""
A static context manager class for measuring execution time of PyTorch code
using CUDA events. It synchronizes GPU operations to ensure accurate time measurements.
"""
def __init__(self, name="", precision=5, display=False):
self.name = name
self.precision = precision
self.display = display
def __enter__(self):
torch.cuda.synchronize()
self.start_event = torch.cuda.Event(enable_timing=True)
self.end_event = torch.cuda.Event(enable_timing=True)
self.start_event.record()
return self
def __exit__(self, *exc):
self.end_event.record()
torch.cuda.synchronize()
# Convert from ms to s
self.elapsed_time = self.start_event.elapsed_time(self.end_event) * 1e-3
if self.display:
print(f"{self.name}: {self.elapsed_time:.{self.precision}f} s")
def get_elapsed_time(self):
"""Returns the elapsed time in microseconds."""
return self.elapsed_time
def get_arch_name() -> str:
if torch.cuda.is_available():
return torch.cuda.get_device_name()
else:
# This returns x86_64 or arm64 (for aarch64)
return platform.machine()
def print_experiment_summary(experiment: Experiment) -> str:
return (
f"Experiment Summary:\n"
f" Name: {experiment.name}\n"
f" Metric: {experiment.metric}\n"
f" Target: {experiment.target:.2f}\n"
f" Actual: {experiment.actual:.2f}\n"
f" Performance: {(experiment.actual / experiment.target) * 100:.2f}% of target\n"
f" Data Type: {experiment.dtype}\n"
f" Device: {experiment.device}\n"
f" Architecture: {experiment.arch}\n"
f" Is Model: {'Yes' if experiment.is_model else 'No'}"
)
def _compile_transformer_backbone(
transformer: nn.Module,
enable_torch_compile: bool,
fullgraph: bool = True,
verbose: bool = True,
):
if verbose:
os.environ["TORCH_COMPILE_DEBUG"] = "1"
os.environ["TORCH_LOGS"] = "inductor,dynamo"
# torch._inductor.list_options()
inductor_config.max_autotune_gemm_backends = "ATEN,TRITON"
inductor_config.benchmark_kernel = True
inductor_config.cuda.compile_opt_level = "-O3" # default: "-O1"
inductor_config.cuda.use_fast_math = True
if enable_torch_compile:
if getattr(transformer, "forward") is not None:
if enable_torch_compile:
optimized_transformer_forward = torch.compile(
getattr(transformer, "forward"),
fullgraph=fullgraph,
backend="inductor",
mode="max-autotune",
)
setattr(transformer, "forward", optimized_transformer_forward)
else:
raise AttributeError(
f"Transformer backbone type: {transformer.__class__.__name__} has no attribute 'forward'"
)
return transformer
@app.command()
def main(
model_id: str = "black-forest-labs/FLUX.1-dev",
dtype: str = "fp16",
diffusion_steps: int = 30,
max_sequence_length: int = 512,
compile: bool = True,
warmup: int = 3,
fullgraph: bool = True,
verbose: bool = False,
):
dtype = TORCH_DTYPES[dtype]
pipeline = FluxPipeline.from_pretrained(
model_id,
torch_dtype=dtype,
)
pipeline.to("cuda")
prompt = "A dart tree in the forest"
flop_counter = FlopCounterMode(display=verbose)
with flop_counter:
_ = pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=diffusion_steps,
max_sequence_length=max_sequence_length,
generator=torch.Generator("cpu").manual_seed(0),
)
device_flops_per_s = DEVICE_LIMITS[0].gemm_tflops[dtype]
expected_tflops = flop_counter.get_total_flops() * 1e-12
transformer = getattr(pipeline, "transformer", None)
vae = getattr(pipeline, "vae", None)
scheduler = getattr(pipeline, "scheduler", None)
if verbose:
transformer_params = (
sum(p.numel() for p in pipeline.transformer.parameters() if p.requires_grad)
/ 1e9
)
print(f"Total transformer number of parameters: {transformer_params:.2f}B")
if transformer is not None and compile:
pipeline.transformer = _compile_transformer_backbone(
transformer,
enable_torch_compile=compile,
fullgraph=fullgraph,
verbose=verbose,
)
# warmup
logging.info("Warmup")
for _ in range(warmup):
_ = pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=diffusion_steps,
max_sequence_length=max_sequence_length,
generator=torch.Generator("cpu").manual_seed(0),
)
with CudaTimer(display=False) as timer:
_ = pipeline(
prompt,
guidance_scale=0.0,
num_inference_steps=diffusion_steps,
max_sequence_length=max_sequence_length,
generator=torch.Generator("cpu").manual_seed(0),
)
tflops_per_s = expected_tflops / timer.get_elapsed_time()
flops_utilization = tflops_per_s / device_flops_per_s
print(f"{tflops_per_s:.5f} TFLOP/s")
print(f"flops utilization {flops_utilization:.2f}")
experiment = Experiment(
f"flux_fwd_{dtype}_seqlen:{max_sequence_length}_steps:{diffusion_steps}",
"tflop/s",
device_flops_per_s,
tflops_per_s,
dtype,
"cuda",
get_arch_name(),
is_model=True,
is_compiled=False,
)
print(experiment)
if verbose:
print(print_experiment_summary(experiment))
if __name__ == "__main__":
typer.run(main)