@@ -6,9 +6,10 @@ This is rapidly changing research software. We make no guarantees of maintaining
6
6
7
7
## Quickstart
8
8
9
- ### 1. Clone this repository and install dependencies
9
+ ### 1. Install
10
10
11
- Assuming [ conda] ( https://docs.conda.io/en/latest/ ) is available, run
11
+ Clone this repository. Then assuming [ conda] ( https://docs.conda.io/en/latest/ )
12
+ is available, run
12
13
```
13
14
make create_environment
14
15
```
@@ -18,20 +19,24 @@ You may verify installation by running `pytest fme/`.
18
19
19
20
### 2. Download data and checkpoint
20
21
21
- These are available via a public
22
+ The checkpoint and a 1-year subsample of the validation data are available at
23
+ [ this Zenodo repository] ( https://zenodo.org/doi/10.5281/zenodo.10791086 ) .
24
+ Download these to your local filesystem.
25
+
26
+ Alternatively, if interested in the complete dataset, this is available via a public
22
27
[ requester pays] ( https://cloud.google.com/storage/docs/requester-pays )
23
- Google Cloud Storage bucket. The checkpoint can be downloaded with:
24
- ```
25
- gsutil -u YOUR_GCP_PROJECT cp gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/checkpoints/ace_ckpt.tar .
26
- ```
27
- Download the 10-year validation data (approx. 190GB; can also download a portion only,
28
- but it is required to download enough data to span the desired prediction period):
28
+ Google Cloud Storage bucket. For example, the 10-year validation data (approx. 190GB)
29
+ can be downloaded with:
29
30
```
30
31
gsutil -m -u YOUR_GCP_PROJECT cp -r gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/data/repeating-climSST-1deg-netCDFs/validation .
31
32
```
33
+ It is possible to download a portion of the dataset only, but it is necessary to have
34
+ enough data to span the desired prediction period. The checkpoint is also available on GCS at
35
+ ` gs://ai2cm-public-requester-pays/2023-11-29-ai2-climate-emulator-v1/checkpoints/ace_ckpt.tar ` .
32
36
33
- ### 3. Update the paths in the [ example config] ( examples/config-inference.yaml ) .
34
- Then in the ` fme ` conda environment, run inference with:
37
+ ### 3. Update configuration and run
38
+ Update the paths in the [ example config] ( examples/config-inference.yaml ) . Then in the
39
+ ` fme ` conda environment, run inference with:
35
40
```
36
41
python -m fme.fcn_training.inference.inference examples/config-inference.yaml
37
42
```
0 commit comments