This repository was archived by the owner on Feb 24, 2025. It is now read-only.
forked from sancarlim/stylegan2-ada-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmelanoma_classifier.py
355 lines (299 loc) · 12.4 KB
/
melanoma_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Last Modified : 12.01.2022
# By : Sandra Carrasco <[email protected]>
import numpy as np
import pandas as pd
import gc
from argparse import ArgumentParser
import torch
from torch import nn
from torch import optim
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.tensorboard import SummaryWriter
import time
import datetime
from sklearn.metrics import accuracy_score, roc_auc_score, f1_score
import os
from utils import (seed_everything, confussion_matrix,
add_pr_curve_tensorboard,
CustomDataset, plot_classes_preds,
seed_worker, load_model, testing_transforms,
training_transforms, load_synthetic_data,
load_isic_data)
import wandb
import warnings
warnings.simplefilter('ignore')
classes = ('benign', 'melanoma')
seed = 2022
seed_everything(seed)
# Setting up GPU for processing or CPU if GPU isn't available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
writer_path = f'training_classifiers_events/test_all_melanoma/{datetime.datetime.now().month}_{datetime.datetime.now().day}/'
writer = SummaryWriter(writer_path)
# TRAINING
def train(model, train_loader, validate_loader,
epochs=10, es_patience=3, wandb_flag=False):
# Training model
print('Starts training...')
best_val = 0
criterion = nn.BCEWithLogitsLoss()
# Optimizer (gradient descent):
optimizer = optim.Adam(model.parameters(), lr=0.0005)
# Scheduler
scheduler = ReduceLROnPlateau(
optimizer=optimizer, mode='max',
patience=es_patience, verbose=True, factor=0.2)
loss_history = []
train_acc_history = []
val_loss_history = []
val_auc_history = []
val_f1_history = []
patience = es_patience
Total_start_time = time.time()
model.to(device)
for e in range(epochs):
start_time = time.time()
correct = 0
running_loss = 0
model.train()
for i, (images, labels) in enumerate(train_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels.view(-1, 1))
loss.backward()
optimizer.step()
# Training loss
running_loss += loss.item()
# Number of correct training predictions and training accuracy
train_preds = torch.round(torch.sigmoid(output))
correct += (
train_preds.cpu() == labels.cpu().unsqueeze(1)
).sum().item()
if i % 500 == 1: # == N every N minibatches
if wandb_flag:
wandb.log({'train/training_loss': loss, 'epoch': e})
else:
# Log in Tensorboard
writer.add_figure(
'predictions vs. actuals',
plot_classes_preds(
model, images, labels.type(torch.int)),
global_step=e+1)
train_acc = correct / len(training_dataset)
val_loss, val_auc_score, val_accuracy, val_f1 = val(
model, validate_loader, criterion)
training_time = str(
datetime.timedelta(seconds=time.time() - start_time))[:7]
print(
"Epoch: {}/{}.. ".format(e+1, epochs),
"Training Loss: {:.3f}.. ".format(running_loss/len(train_loader)),
"Training Accuracy: {:.3f}..".format(train_acc),
"Validation Loss: {:.3f}.. ".format(val_loss/len(validate_loader)),
"Validation Accuracy: {:.3f}".format(val_accuracy),
"Validation AUC Score: {:.3f}".format(val_auc_score),
"Validation F1 Score: {:.3f}".format(val_f1),
"Training Time: {}".format(training_time))
if wandb_flag:
wandb.log(
{'train/Training acc': train_acc, 'epoch': e,
'val/Validation Acc': val_accuracy,
'val/Validation Auc': val_auc_score,
'val/Validation Loss': val_loss/len(validate_loader)})
else:
# Log in Tensorboard
writer.add_scalar(
'training loss', running_loss/len(train_loader), e+1)
writer.add_scalar(
'Training acc', train_acc, e+1)
writer.add_scalar(
'Validation AUC Score', val_auc_score, e+1)
scheduler.step(val_accuracy)
if val_accuracy > best_val:
best_val = val_accuracy
if wandb_flag:
wandb.run.summary["best_auc_score"] = val_auc_score
wandb.run.summary["best_acc_score"] = val_accuracy
# Resetting patience since we have new best validation accuracy
patience = es_patience
model_path = os.path.join(
writer_path,
f'./classifier_{args.model}_{best_val:.4f}'
f'_{datetime.datetime.now()}.pth')
# Saving current best model
torch.save(model.state_dict(), model_path)
print(f'Saving model in {model_path}')
else:
patience -= 1
if patience == 0:
print('Early stopping. Best Val f1: {:.3f}'.format(best_val))
break
loss_history.append(running_loss)
train_acc_history.append(train_acc)
val_loss_history.append(val_loss)
val_auc_history.append(val_auc_score)
val_f1_history.append(val_f1)
total_training_time = str(
datetime.timedelta(seconds=time.time() - Total_start_time))[:7]
print("Total Training Time: {}".format(total_training_time))
del train_loader, validate_loader, images
gc.collect()
return model_path
def val(model, validate_loader, criterion):
model.eval()
preds = []
all_labels = []
# Turning off gradients for validation, saves memory and computations
with torch.no_grad():
val_loss = 0
for val_images, val_labels in validate_loader:
val_images = val_images.to(device)
val_labels = val_labels.to(device)
val_output = model(val_images)
val_loss += (criterion(val_output, val_labels.view(-1, 1))).item()
val_pred = torch.sigmoid(val_output)
preds.append(val_pred.cpu())
all_labels.append(val_labels.cpu())
pred = np.vstack(preds).ravel()
pred2 = torch.tensor(pred)
val_gt = np.concatenate(all_labels)
val_gt2 = torch.tensor(val_gt)
val_accuracy = accuracy_score(val_gt2, torch.round(pred2))
val_auc_score = roc_auc_score(val_gt, pred)
val_f1_score = f1_score(val_gt, np.round(pred))
return val_loss, val_auc_score, val_accuracy, val_f1_score
def test(model, test_loader):
test_preds = []
all_labels = []
with torch.no_grad():
for _, (test_images, test_labels) in enumerate(test_loader):
test_images = test_images.to(device)
test_labels = test_labels.to(device)
test_output = model(test_images)
test_pred = torch.sigmoid(test_output)
test_preds.append(test_pred.cpu())
all_labels.append(test_labels.cpu())
test_pred = np.vstack(test_preds).ravel()
test_pred2 = torch.tensor(test_pred)
test_gt = np.concatenate(all_labels)
test_gt2 = torch.tensor(test_gt)
'''
# For edge cases
indeces_misclassified = np.where(test_gt != np.round(test_pred))[0]
well_classified = list(
set(list(range(
0, len(test_gt2)))) - set(indeces_misclassified.tolist()))
edge_cases = np.where(
(test_gt[well_classified] - test_pred[well_classified]
) > 0.25)[0]
'''
try:
test_accuracy = accuracy_score(
test_gt2.cpu(),
torch.round(test_pred2))
test_auc_score = roc_auc_score(test_gt, test_pred)
test_f1_score = f1_score(test_gt, np.round(test_pred))
except:
test_auc_score = 0
test_f1_score = 0
pass
# plot all the pr curves
for i in range(len(classes)):
add_pr_curve_tensorboard(i, test_pred2, test_gt2, writer)
print(
"Test Accuracy:{:.5f}, ROC_AUC_score: {:.5f}, F1 score: {:.4f}".format(
test_accuracy, test_auc_score, test_f1_score)
)
return test_pred, test_gt, test_accuracy
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--syn_data_path", type=str, default='/workspace/generated-no-valset')
parser.add_argument(
"--real_data_path", type=str,
default='/workspace/melanoma_isic_dataset')
parser.add_argument(
"--model", type=str, default='efficientnet-b2',
choices=["efficientnet-b2", "googlenet", "resnet50"])
parser.add_argument("--epochs", type=int, default='30')
parser.add_argument(
"--es", type=int, default='3', help="Iterations for Early Stopping")
parser.add_argument(
"--unbalanced", action='store_true', help='train with 15% melanoma')
parser.add_argument(
"--only_reals", action='store_true',
help='train using only real images')
parser.add_argument(
"--only_syn", action='store_true',
help='train using only synthetic images')
parser.add_argument("--tags", type=str, default='whole isic')
parser.add_argument(
"--synt_n_imgs", type=str, default="0,15",
help='n benign, n melanoma K synthetic images to add to the real data')
parser.add_argument(
"--wandb_flag",
action="store_true",
default=False,
help="Launch experiment and log metrics with wandb",
)
args = parser.parse_args()
if args.wandb_flag:
wandb.init(project="dai-healthcare", entity='eyeforai', group='isic',
tags=[args.tags], config={"model": args.model})
wandb.config.update(args)
isic_train_df, validation_df = load_isic_data(args.real_data_path)
synt_train_df = load_synthetic_data(
args.syn_data_path, args.synt_n_imgs, args.only_syn)
if args.only_syn:
train_df = synt_train_df
elif args.only_reals:
train_df = isic_train_df
else:
train_df = pd.concat([isic_train_df, synt_train_df])
training_dataset = CustomDataset(
df=train_df, train=True, transforms=training_transforms)
validation_dataset = CustomDataset(
df=validation_df, train=True,
transforms=training_transforms)
testing_dataset = CustomDataset(
df=validation_df, train=True, transforms=testing_transforms)
train_loader = torch.utils.data.DataLoader(
training_dataset, batch_size=32, num_workers=4,
worker_init_fn=seed_worker, shuffle=True)
validate_loader = torch.utils.data.DataLoader(
validation_dataset, batch_size=16, num_workers=4,
worker_init_fn=seed_worker, shuffle=False)
test_loader = torch.utils.data.DataLoader(
testing_dataset, batch_size=16, num_workers=4,
worker_init_fn=seed_worker, shuffle=False)
print(len(training_dataset), len(validation_dataset))
print(len(train_loader), len(validate_loader), len(test_loader))
# Load model
model = load_model(args.model)
print(f'Model {args.model} loaded.')
# If we need to freeze the pretrained model parameters
# to avoid backpropogating through them, turn to "False"
for parameter in model.parameters():
parameter.requires_grad = True
# Total Parameters
# (If the model is unfrozen the trainning params
# will be the same as the Total params)
total_params = sum(p.numel() for p in model.parameters())
print(f'{total_params:,} total parameters.')
total_trainable_params = sum(
p.numel() for p in model.parameters() if p.requires_grad)
print(f'{total_trainable_params:,} training parameters.')
model_path = train(model, train_loader,
validate_loader,
epochs=args.epochs,
es_patience=args.es,
wandb_flag=args.wandb_flag)
del training_dataset, validation_dataset
gc.collect()
# TESTING THE NETWORK
model.load_state_dict(torch.load(model_path))
model.eval()
model.to(device)
test_pred, test_gt, test_accuracy = test(model, test_loader)
# CONFUSSION MATRIX
confussion_matrix(test_gt, test_pred, test_accuracy, writer_path)