-
Notifications
You must be signed in to change notification settings - Fork 3.9k
/
Copy pathtest_deep_learning4e.py
81 lines (59 loc) · 2.62 KB
/
test_deep_learning4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import pytest
from tensorflow import keras
from keras.datasets import imdb
from deep_learning4e import *
from learning4e import DataSet, grade_learner, err_ratio
random.seed("aima-python")
iris_tests = [([5.0, 3.1, 0.9, 0.1], 0),
([5.1, 3.5, 1.0, 0.0], 0),
([4.9, 3.3, 1.1, 0.1], 0),
([6.0, 3.0, 4.0, 1.1], 1),
([6.1, 2.2, 3.5, 1.0], 1),
([5.9, 2.5, 3.3, 1.1], 1),
([7.5, 4.1, 6.2, 2.3], 2),
([7.3, 4.0, 6.1, 2.4], 2),
([7.0, 3.3, 6.1, 2.5], 2)]
def test_neural_net():
iris = DataSet(name='iris')
classes = ['setosa', 'versicolor', 'virginica']
iris.classes_to_numbers(classes)
n_samples, n_features = len(iris.examples), iris.target
X, y = (np.array([x[:n_features] for x in iris.examples]),
np.array([x[n_features] for x in iris.examples]))
nnl_gd = NeuralNetworkLearner(iris, [4], l_rate=0.15, epochs=100, optimizer=stochastic_gradient_descent).fit(X, y)
assert grade_learner(nnl_gd, iris_tests) > 0.7
assert err_ratio(nnl_gd, iris) < 0.15
nnl_adam = NeuralNetworkLearner(iris, [4], l_rate=0.001, epochs=200, optimizer=adam).fit(X, y)
assert grade_learner(nnl_adam, iris_tests) > 0.7
assert err_ratio(nnl_adam, iris) < 0.15
def test_perceptron():
iris = DataSet(name='iris')
classes = ['setosa', 'versicolor', 'virginica']
iris.classes_to_numbers(classes)
n_samples, n_features = len(iris.examples), iris.target
X, y = (np.array([x[:n_features] for x in iris.examples]),
np.array([x[n_features] for x in iris.examples]))
pl_gd = PerceptronLearner(iris, l_rate=0.01, epochs=100, optimizer=stochastic_gradient_descent).fit(X, y)
assert grade_learner(pl_gd, iris_tests) == 1
assert err_ratio(pl_gd, iris) < 0.2
pl_adam = PerceptronLearner(iris, l_rate=0.01, epochs=100, optimizer=adam).fit(X, y)
assert grade_learner(pl_adam, iris_tests) == 1
assert err_ratio(pl_adam, iris) < 0.2
def test_rnn():
data = imdb.load_data(num_words=5000)
train, val, test = keras_dataset_loader(data)
train = (train[0][:1000], train[1][:1000])
val = (val[0][:200], val[1][:200])
rnn = SimpleRNNLearner(train, val)
score = rnn.evaluate(test[0][:200], test[1][:200], verbose=False)
assert score[1] >= 0.2
def test_autoencoder():
iris = DataSet(name='iris')
classes = ['setosa', 'versicolor', 'virginica']
iris.classes_to_numbers(classes)
inputs = np.asarray(iris.examples)
al = AutoencoderLearner(inputs, 100)
print(inputs[0])
print(al.predict(inputs[:1]))
if __name__ == "__main__":
pytest.main()