diff --git a/csp.py b/csp.py index 6edb48004..ce3754914 100644 --- a/csp.py +++ b/csp.py @@ -1,18 +1,17 @@ """CSP (Constraint Satisfaction Problems) problems and solvers. (Chapter 6)""" + +import itertools +import random +import re import string +from collections import defaultdict, Counter +from functools import reduce from operator import eq, neg from sortedcontainers import SortedSet -from utils import argmin_random_tie, count, first, extend import search - -from collections import defaultdict, Counter -from functools import reduce - -import itertools -import re -import random +from utils import argmin_random_tie, count, first, extend class CSP(search.Problem): @@ -54,12 +53,12 @@ class CSP(search.Problem): def __init__(self, variables, domains, neighbors, constraints): """Construct a CSP problem. If variables is empty, it becomes domains.keys().""" + super().__init__(()) variables = variables or list(domains.keys()) self.variables = variables self.domains = domains self.neighbors = neighbors self.constraints = constraints - self.initial = () self.curr_domains = None self.nassigns = 0 @@ -80,8 +79,7 @@ def nconflicts(self, var, val, assignment): # Subclasses may implement this more efficiently def conflict(var2): - return (var2 in assignment and - not self.constraints(var, val, var2, assignment[var2])) + return var2 in assignment and not self.constraints(var, val, var2, assignment[var2]) return count(conflict(v) for v in self.neighbors[var]) @@ -552,7 +550,7 @@ def assign_value(Xj, Xk, csp, assignment): # ______________________________________________________________________________ -# Map Coloring Problems +# Map Coloring CSP Problems class UniversalDict: @@ -585,7 +583,7 @@ def MapColoringCSP(colors, neighbors): return CSP(list(neighbors.keys()), UniversalDict(colors), neighbors, different_values_constraint) -def parse_neighbors(neighbors, variables=None): +def parse_neighbors(neighbors): """Convert a string of the form 'X: Y Z; Y: Z' into a dict mapping regions to neighbors. The syntax is a region name followed by a ':' followed by zero or more region names, followed by ';', repeated for @@ -676,10 +674,10 @@ def nconflicts(self, var, val, assignment): def assign(self, var, val, assignment): """Assign var, and keep track of conflicts.""" - oldval = assignment.get(var, None) - if val != oldval: - if oldval is not None: # Remove old val if there was one - self.record_conflict(assignment, var, oldval, -1) + old_val = assignment.get(var, None) + if val != old_val: + if old_val is not None: # Remove old val if there was one + self.record_conflict(assignment, var, old_val, -1) self.record_conflict(assignment, var, val, +1) CSP.assign(self, var, val, assignment) @@ -776,7 +774,7 @@ class Sudoku(CSP): >>> h = Sudoku(harder1) >>> backtracking_search(h, select_unassigned_variable=mrv, inference=forward_checking) is not None True - """ # noqa + """ R3 = _R3 Cell = _CELL @@ -831,7 +829,7 @@ def Zebra(): Spaniard: Dog; Kools: Yellow; Chesterfields: Fox; Norwegian: Blue; Winston: Snails; LuckyStrike: OJ; Ukranian: Tea; Japanese: Parliaments; Kools: Horse; - Coffee: Green; Green: Ivory""", variables) + Coffee: Green; Green: Ivory""") for type in [Colors, Pets, Drinks, Countries, Smokes]: for A in type: for B in type: diff --git a/knowledge.py b/knowledge.py index a33eac81a..2c00f22aa 100644 --- a/knowledge.py +++ b/knowledge.py @@ -300,7 +300,7 @@ def extend_example(self, example, literal): def new_literals(self, clause): """Generate new literals based on known predicate symbols. - Generated literal must share atleast one variable with clause""" + Generated literal must share at least one variable with clause""" share_vars = variables(clause[0]) for l in clause[1]: share_vars.update(variables(l)) diff --git a/logic.py b/logic.py index ae987edb4..bd0493043 100644 --- a/logic.py +++ b/logic.py @@ -46,13 +46,10 @@ issequence, Expr, expr, subexpressions, extend) -# ______________________________________________________________________________ - - class KB: """A knowledge base to which you can tell and ask sentences. To create a KB, first subclass this class and implement - tell, ask_generator, and retract. Why ask_generator instead of ask? + tell, ask_generator, and retract. Why ask_generator instead of ask? The book is a bit vague on what ask means -- For a Propositional Logic KB, ask(P & Q) returns True or False, but for an FOL KB, something like ask(Brother(x, y)) might return many substitutions @@ -173,7 +170,7 @@ def variables(s): def is_definite_clause(s): """Returns True for exprs s of the form A & B & ... & C ==> D, - where all literals are positive. In clause form, this is + where all literals are positive. In clause form, this is ~A | ~B | ... | ~C | D, where exactly one clause is positive. >>> is_definite_clause(expr('Farmer(Mac)')) True @@ -602,7 +599,7 @@ def pl_fc_entails(kb, q): # ______________________________________________________________________________ -# DPLL-Satisfiable [Figure 7.17] +# Heuristics for SAT Solvers def no_branching_heuristic(symbols, clauses): @@ -707,6 +704,10 @@ def jw2(symbols, clauses): return P, True if scores[P] >= scores[~P] else False +# ______________________________________________________________________________ +# DPLL-Satisfiable [Figure 7.17] + + def dpll_satisfiable(s, branching_heuristic=no_branching_heuristic): """Check satisfiability of a propositional sentence. This differs from the book code in two ways: (1) it returns a model @@ -1114,7 +1115,7 @@ def sat_count(sym): # ______________________________________________________________________________ -# Map Coloring Problems +# Map Coloring SAT Problems def MapColoringSAT(colors, neighbors): @@ -1803,7 +1804,7 @@ def cascade_substitution(s): for x in s: s[x] = subst(s, s.get(x)) if isinstance(s.get(x), Expr) and not is_variable(s.get(x)): - # Ensure Function Terms are correct updates by passing over them again. + # Ensure Function Terms are correct updates by passing over them again s[x] = subst(s, s.get(x)) @@ -2055,7 +2056,7 @@ def fol_bc_and(kb, goals, theta): # ______________________________________________________________________________ # Example application (not in the book). -# You can use the Expr class to do symbolic differentiation. This used to be +# You can use the Expr class to do symbolic differentiation. This used to be # a part of AI; now it is considered a separate field, Symbolic Algebra. diff --git a/making_simple_decision4e.py b/making_simple_decision4e.py index 775d5fe2a..25ba3e3b6 100644 --- a/making_simple_decision4e.py +++ b/making_simple_decision4e.py @@ -1,11 +1,9 @@ -from utils4e import ( - argmax, element_wise_product, matrix_multiplication, - vector_to_diagonal, vector_add, scalar_vector_product, inverse_matrix, - weighted_sample_with_replacement, probability, normalize -) +import random + from agents import Agent from probability import BayesNet -import random +from utils4e import argmax, vector_add, weighted_sample_with_replacement + # Making Simple Decisions (Chapter 15) @@ -108,6 +106,7 @@ def vpi(self, variable): class MCLmap: """Map which provides probability distributions and sensor readings. Consists of discrete cells which are either an obstacle or empty""" + def __init__(self, m): self.m = m self.nrows = len(m) @@ -131,7 +130,7 @@ def ray_cast(self, sensor_num, kin_state): # 0 # 3R1 # 2 - delta = ((sensor_num % 2 == 0)*(sensor_num - 1), (sensor_num % 2 == 1)*(2 - sensor_num)) + delta = ((sensor_num % 2 == 0) * (sensor_num - 1), (sensor_num % 2 == 1) * (2 - sensor_num)) # sensor direction changes based on orientation for _ in range(orient): delta = (delta[1], -delta[0]) @@ -149,9 +148,9 @@ def ray_cast(sensor_num, kin_state, m): return m.ray_cast(sensor_num, kin_state) M = len(z) - W = [0]*N - S_ = [0]*N - W_ = [0]*N + W = [0] * N + S_ = [0] * N + W_ = [0] * N v = a['v'] w = a['w'] @@ -167,4 +166,3 @@ def ray_cast(sensor_num, kin_state, m): S = weighted_sample_with_replacement(N, S_, W_) return S - diff --git a/planning.py b/planning.py index 3835e05df..f62c23e02 100644 --- a/planning.py +++ b/planning.py @@ -1047,8 +1047,8 @@ def orderlevel(self, level, planning_problem): def execute(self): """Finds total-order solution for a planning graph""" - graphplan_solution = GraphPlan(self.planning_problem).execute() - filtered_solution = self.filter(graphplan_solution) + graphPlan_solution = GraphPlan(self.planning_problem).execute() + filtered_solution = self.filter(graphPlan_solution) ordered_solution = [] planning_problem = self.planning_problem for level in filtered_solution: @@ -1635,7 +1635,7 @@ def angelic_search(self, hierarchy, initial_plan): if guaranteed and RealWorldPlanningProblem.making_progress(plan, initial_plan): final_state = guaranteed[0] # any element of guaranteed return RealWorldPlanningProblem.decompose(hierarchy, final_state, pes_reachable_set) - # there should be at least one HLA/Angelic_HLA, otherwise plan would be primitive + # there should be at least one HLA/AngelicHLA, otherwise plan would be primitive hla, index = RealWorldPlanningProblem.find_hla(plan, hierarchy) prefix = plan.action[:index] suffix = plan.action[index + 1:] diff --git a/probability.py b/probability.py index 183edfcf8..06a502547 100644 --- a/probability.py +++ b/probability.py @@ -2,18 +2,16 @@ Probability models. (Chapter 13-15) """ -from utils import (product, argmax, element_wise_product, matrix_multiplication, vector_to_diagonal, vector_add, - scalar_vector_product, inverse_matrix, weighted_sample_with_replacement, isclose, probability, - normalize, extend) -from agents import Agent - import random from collections import defaultdict from functools import reduce -import numpy as np +import numpy as np -# ______________________________________________________________________________ +from agents import Agent +from utils import (product, argmax, element_wise_product, matrix_multiplication, vector_to_diagonal, vector_add, + scalar_vector_product, inverse_matrix, weighted_sample_with_replacement, isclose, probability, + normalize, extend) def DTAgentProgram(belief_state): @@ -106,7 +104,7 @@ def __getitem__(self, values): return ProbDist.__getitem__(self, values) def __setitem__(self, values, p): - """Set P(values) = p. Values can be a tuple or a dict; it must + """Set P(values) = p. Values can be a tuple or a dict; it must have a value for each of the variables in the joint. Also keep track of the values we have seen so far for each variable.""" values = event_values(values, self.variables) @@ -307,7 +305,7 @@ class BayesNode: def __init__(self, X, parents, cpt): """X is a variable name, and parents a sequence of variable - names or a space-separated string. cpt, the conditional + names or a space-separated string. cpt, the conditional probability table, takes one of these forms: * A number, the unconditional probability P(X=true). You can @@ -541,8 +539,10 @@ def prior_sample(bn): def rejection_sampling(X, e, bn, N=10000): - """Estimate the probability distribution of variable X given - evidence e in BayesNet bn, using N samples. [Figure 14.14] + """ + [Figure 14.14] + Estimate the probability distribution of variable X given + evidence e in BayesNet bn, using N samples. Raises a ZeroDivisionError if all the N samples are rejected, i.e., inconsistent with e. >>> random.seed(47) diff --git a/probability4e.py b/probability4e.py index 7d464c62a..66d18dcf6 100644 --- a/probability4e.py +++ b/probability4e.py @@ -1,11 +1,12 @@ """Probability models.""" -from utils4e import product, argmax, isclose, probability, extend -from math import sqrt, pi, exp import copy import random from collections import defaultdict from functools import reduce +from math import sqrt, pi, exp + +from utils4e import product, argmax, isclose, probability, extend # ______________________________________________________________________________ @@ -107,7 +108,7 @@ def __getitem__(self, values): return ProbDist.__getitem__(self, values) def __setitem__(self, values, p): - """Set P(values) = p. Values can be a tuple or a dict; it must + """Set P(values) = p. Values can be a tuple or a dict; it must have a value for each of the variables in the joint. Also keep track of the values we have seen so far for each variable.""" values = event_values(values, self.variables) @@ -628,8 +629,9 @@ def prior_sample(bn): def rejection_sampling(X, e, bn, N=10000): """ + [Figure 13.16] Estimate the probability distribution of variable X given - evidence e in BayesNet bn, using N samples. [Figure 13.16] + evidence e in BayesNet bn, using N samples. Raises a ZeroDivisionError if all the N samples are rejected, i.e., inconsistent with e. >>> random.seed(47) @@ -656,8 +658,9 @@ def consistent_with(event, evidence): def likelihood_weighting(X, e, bn, N=10000): """ + [Figure 13.17] Estimate the probability distribution of variable X given - evidence e in BayesNet bn. [Figure 13.17] + evidence e in BayesNet bn. >>> random.seed(1017) >>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T), ... burglary, 10000).show_approx() diff --git a/search.py b/search.py index 87f6b86e3..262f5a793 100644 --- a/search.py +++ b/search.py @@ -16,9 +16,6 @@ print_table, open_data, PriorityQueue, name, distance, vector_add, inf) -# ______________________________________________________________________________ - - class Problem: """The abstract class for a formal problem. You should subclass this and implement the methods actions and result, and possibly @@ -59,12 +56,12 @@ def path_cost(self, c, state1, action, state2): """Return the cost of a solution path that arrives at state2 from state1 via action, assuming cost c to get up to state1. If the problem is such that the path doesn't matter, this function will only look at - state2. If the path does matter, it will consider c and maybe state1 + state2. If the path does matter, it will consider c and maybe state1 and action. The default method costs 1 for every step in the path.""" return c + 1 def value(self, state): - """For optimization problems, each state has a value. Hill-climbing + """For optimization problems, each state has a value. Hill Climbing and related algorithms try to maximize this value.""" raise NotImplementedError @@ -76,8 +73,8 @@ class Node: """A node in a search tree. Contains a pointer to the parent (the node that this is a successor of) and to the actual state for this node. Note that if a state is arrived at by two paths, then there are two nodes with - the same state. Also includes the action that got us to this state, and - the total path_cost (also known as g) to reach the node. Other functions + the same state. Also includes the action that got us to this state, and + the total path_cost (also known as g) to reach the node. Other functions may add an f and h value; see best_first_graph_search and astar_search for an explanation of how the f and h values are handled. You will not need to subclass this class.""" @@ -137,7 +134,10 @@ def __hash__(self): class SimpleProblemSolvingAgentProgram: - """Abstract framework for a problem-solving agent. [Figure 3.1]""" + """ + [Figure 3.1] + Abstract framework for a problem-solving agent. + """ def __init__(self, initial_state=None): """State is an abstract representation of the state @@ -176,10 +176,13 @@ def search(self, problem): def breadth_first_tree_search(problem): - """Search the shallowest nodes in the search tree first. - Search through the successors of a problem to find a goal. - The argument frontier should be an empty queue. - Repeats infinitely in case of loops. [Figure 3.7]""" + """ + [Figure 3.7] + Search the shallowest nodes in the search tree first. + Search through the successors of a problem to find a goal. + The argument frontier should be an empty queue. + Repeats infinitely in case of loops. + """ frontier = deque([Node(problem.initial)]) # FIFO queue @@ -192,10 +195,13 @@ def breadth_first_tree_search(problem): def depth_first_tree_search(problem): - """Search the deepest nodes in the search tree first. - Search through the successors of a problem to find a goal. - The argument frontier should be an empty queue. - Repeats infinitely in case of loops. [Figure 3.7]""" + """ + [Figure 3.7] + Search the deepest nodes in the search tree first. + Search through the successors of a problem to find a goal. + The argument frontier should be an empty queue. + Repeats infinitely in case of loops. + """ frontier = [Node(problem.initial)] # Stack @@ -208,11 +214,14 @@ def depth_first_tree_search(problem): def depth_first_graph_search(problem): - """Search the deepest nodes in the search tree first. - Search through the successors of a problem to find a goal. - The argument frontier should be an empty queue. - Does not get trapped by loops. - If two paths reach a state, only use the first one. [Figure 3.7]""" + """ + [Figure 3.7] + Search the deepest nodes in the search tree first. + Search through the successors of a problem to find a goal. + The argument frontier should be an empty queue. + Does not get trapped by loops. + If two paths reach a state, only use the first one. + """ frontier = [(Node(problem.initial))] # Stack explored = set() @@ -417,9 +426,7 @@ class EightPuzzle(Problem): def __init__(self, initial, goal=(1, 2, 3, 4, 5, 6, 7, 8, 0)): """ Define goal state and initialize a problem """ - - self.goal = goal - Problem.__init__(self, initial, goal) + super().__init__(initial, goal) def find_blank_square(self, state): """Return the index of the blank square in a given state""" @@ -490,11 +497,10 @@ class PlanRoute(Problem): def __init__(self, initial, goal, allowed, dimrow): """ Define goal state and initialize a problem """ - + super().__init__(initial, goal) self.dimrow = dimrow self.goal = goal self.allowed = allowed - Problem.__init__(self, initial, goal) def actions(self, state): """ Return the actions that can be executed in the given state. @@ -623,8 +629,11 @@ def RBFS(problem, node, flimit): def hill_climbing(problem): - """From the initial node, keep choosing the neighbor with highest value, - stopping when no neighbor is better. [Figure 4.2]""" + """ + [Figure 4.2] + From the initial node, keep choosing the neighbor with highest value, + stopping when no neighbor is better. + """ current = Node(problem.initial) while True: neighbors = current.expand(problem) @@ -725,7 +734,7 @@ class PeakFindingProblem(Problem): def __init__(self, initial, grid, defined_actions=directions4): """The grid is a 2 dimensional array/list whose state is specified by tuple of indices""" - Problem.__init__(self, initial) + super().__init__(initial) self.grid = grid self.defined_actions = defined_actions self.n = len(grid) @@ -738,7 +747,7 @@ def actions(self, state): allowed_actions = [] for action in self.defined_actions: next_state = vector_add(state, self.defined_actions[action]) - if 0 <= next_state[0] <= self.n - 1 and next_state[1] >= 0 and next_state[1] <= self.m - 1: + if 0 <= next_state[0] <= self.n - 1 and 0 <= next_state[1] <= self.m - 1: allowed_actions.append(action) return allowed_actions @@ -756,10 +765,13 @@ def value(self, state): class OnlineDFSAgent: - """[Figure 4.21] The abstract class for an OnlineDFSAgent. Override + """ + [Figure 4.21] + The abstract class for an OnlineDFSAgent. Override update_state method to convert percept to state. While initializing the subclass a problem needs to be provided which is an instance of - a subclass of the Problem class.""" + a subclass of the Problem class. + """ def __init__(self, problem): self.problem = problem @@ -811,8 +823,7 @@ class OnlineSearchProblem(Problem): Carried in a deterministic and a fully observable environment.""" def __init__(self, initial, goal, graph): - self.initial = initial - self.goal = goal + super().__init__(initial, goal) self.graph = graph def actions(self, state): @@ -893,7 +904,7 @@ def LRTA_cost(self, s, a, s1, H): # Genetic Algorithm -def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20): +def genetic_search(problem, ngen=1000, pmut=0.1, n=20): """Call genetic_algorithm on the appropriate parts of a problem. This requires the problem to have states that can mate and mutate, plus a value method that scores states.""" @@ -989,17 +1000,17 @@ def mutate(x, gene_pool, pmut): class Graph: - """A graph connects nodes (vertices) by edges (links). Each edge can also - have a length associated with it. The constructor call is something like: + """A graph connects nodes (vertices) by edges (links). Each edge can also + have a length associated with it. The constructor call is something like: g = Graph({'A': {'B': 1, 'C': 2}) this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from - A to B, and an edge of length 2 from A to C. You can also do: + A to B, and an edge of length 2 from A to C. You can also do: g = Graph({'A': {'B': 1, 'C': 2}, directed=False) This makes an undirected graph, so inverse links are also added. The graph stays undirected; if you add more links with g.connect('B', 'C', 3), then - inverse link is also added. You can use g.nodes() to get a list of nodes, + inverse link is also added. You can use g.nodes() to get a list of nodes, g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the - length of the link from A to B. 'Lengths' can actually be any object at + length of the link from A to B. 'Lengths' can actually be any object at all, and nodes can be any hashable object.""" def __init__(self, graph_dict=None, directed=True): @@ -1165,7 +1176,7 @@ class GraphProblem(Problem): """The problem of searching a graph from one node to another.""" def __init__(self, initial, goal, graph): - Problem.__init__(self, initial, goal) + super().__init__(initial, goal) self.graph = graph def actions(self, A): @@ -1221,18 +1232,17 @@ def path_cost(self): class NQueensProblem(Problem): """The problem of placing N queens on an NxN board with none attacking - each other. A state is represented as an N-element array, where + each other. A state is represented as an N-element array, where a value of r in the c-th entry means there is a queen at column c, row r, and a value of -1 means that the c-th column has not been - filled in yet. We fill in columns left to right. + filled in yet. We fill in columns left to right. >>> depth_first_tree_search(NQueensProblem(8)) """ def __init__(self, N): + super().__init__(tuple([-1] * N)) self.N = N - self.initial = tuple([-1] * N) - Problem.__init__(self, self.initial) def actions(self, state): """In the leftmost empty column, try all non-conflicting rows.""" diff --git a/tests/test_csp.py b/tests/test_csp.py index 553880a40..a070cd531 100644 --- a/tests/test_csp.py +++ b/tests/test_csp.py @@ -402,7 +402,7 @@ def test_min_conflicts(): assert min_conflicts(NQueensCSP(3), 1000) is None -def test_nqueensCSP(): +def test_nqueens_csp(): csp = NQueensCSP(8) assignment = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4} @@ -477,8 +477,7 @@ def test_topological_sort(): def test_tree_csp_solver(): - australia_small = MapColoringCSP(list('RB'), - 'NT: WA Q; NSW: Q V') + australia_small = MapColoringCSP(list('RB'), 'NT: WA Q; NSW: Q V') tcs = tree_csp_solver(australia_small) assert (tcs['NT'] == 'R' and tcs['WA'] == 'B' and tcs['Q'] == 'B' and tcs['NSW'] == 'R' and tcs['V'] == 'B') or \ (tcs['NT'] == 'B' and tcs['WA'] == 'R' and tcs['Q'] == 'R' and tcs['NSW'] == 'B' and tcs['V'] == 'R') diff --git a/tests/test_knowledge.py b/tests/test_knowledge.py index 556637652..d3829de02 100644 --- a/tests/test_knowledge.py +++ b/tests/test_knowledge.py @@ -33,9 +33,8 @@ def r_example(Alt, Bar, Fri, Hun, Pat, Price, Rain, Res, Type, Est, GOAL): - return {'Alt': Alt, 'Bar': Bar, 'Fri': Fri, 'Hun': Hun, 'Pat': Pat, - 'Price': Price, 'Rain': Rain, 'Res': Res, 'Type': Type, 'Est': Est, - 'GOAL': GOAL} + return {'Alt': Alt, 'Bar': Bar, 'Fri': Fri, 'Hun': Hun, 'Pat': Pat, 'Price': Price, + 'Rain': Rain, 'Res': Res, 'Type': Type, 'Est': Est, 'GOAL': GOAL} restaurant = [ diff --git a/tests/test_logic.py b/tests/test_logic.py index c05b29ec1..8d018bc40 100644 --- a/tests/test_logic.py +++ b/tests/test_logic.py @@ -292,11 +292,11 @@ def test_to_cnf(): '((~P12 | B11) & (~P21 | B11) & (P12 | P21 | ~B11) & ~B11 & P12)') assert repr(to_cnf((P & Q) | (~P & ~Q))) == '((~P | P) & (~Q | P) & (~P | Q) & (~Q | Q))' assert repr(to_cnf('A <=> B')) == '((A | ~B) & (B | ~A))' - assert repr(to_cnf("B <=> (P1 | P2)")) == '((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))' + assert repr(to_cnf('B <=> (P1 | P2)')) == '((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))' assert repr(to_cnf('A <=> (B & C)')) == '((A | ~B | ~C) & (B | ~A) & (C | ~A))' - assert repr(to_cnf("a | (b & c) | d")) == '((b | a | d) & (c | a | d))' - assert repr(to_cnf("A & (B | (D & E))")) == '(A & (D | B) & (E | B))' - assert repr(to_cnf("A | (B | (C | (D & E)))")) == '((D | A | B | C) & (E | A | B | C))' + assert repr(to_cnf('a | (b & c) | d')) == '((b | a | d) & (c | a | d))' + assert repr(to_cnf('A & (B | (D & E))')) == '(A & (D | B) & (E | B))' + assert repr(to_cnf('A | (B | (C | (D & E)))')) == '((D | A | B | C) & (E | A | B | C))' assert repr(to_cnf( '(A <=> ~B) ==> (C | ~D)')) == '((B | ~A | C | ~D) & (A | ~A | C | ~D) & (B | ~B | C | ~D) & (A | ~B | C | ~D))' diff --git a/tests/test_planning.py b/tests/test_planning.py index 103402481..a39152adc 100644 --- a/tests/test_planning.py +++ b/tests/test_planning.py @@ -7,34 +7,34 @@ from utils import expr from logic import FolKB, conjuncts -random.seed("aima-python") +random.seed('aima-python') def test_action(): precond = 'At(c, a) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)' effect = 'In(c, p) & ~At(c, a)' a = Action('Load(c, p, a)', precond, effect) - args = [expr("C1"), expr("P1"), expr("SFO")] - assert a.substitute(expr("Load(c, p, a)"), args) == expr("Load(C1, P1, SFO)") + args = [expr('C1'), expr('P1'), expr('SFO')] + assert a.substitute(expr('Load(c, p, a)'), args) == expr('Load(C1, P1, SFO)') test_kb = FolKB(conjuncts(expr('At(C1, SFO) & At(C2, JFK) & At(P1, SFO) & At(P2, JFK) & Cargo(C1) & Cargo(C2) & ' 'Plane(P1) & Plane(P2) & Airport(SFO) & Airport(JFK)'))) assert a.check_precond(test_kb, args) a.act(test_kb, args) - assert test_kb.ask(expr("In(C1, P2)")) is False - assert test_kb.ask(expr("In(C1, P1)")) is not False - assert test_kb.ask(expr("Plane(P2)")) is not False + assert test_kb.ask(expr('In(C1, P2)')) is False + assert test_kb.ask(expr('In(C1, P1)')) is not False + assert test_kb.ask(expr('Plane(P2)')) is not False assert not a.check_precond(test_kb, args) def test_air_cargo_1(): p = air_cargo() assert p.goal_test() is False - solution_1 = [expr("Load(C1 , P1, SFO)"), - expr("Fly(P1, SFO, JFK)"), - expr("Unload(C1, P1, JFK)"), - expr("Load(C2, P2, JFK)"), - expr("Fly(P2, JFK, SFO)"), - expr("Unload(C2, P2, SFO)")] + solution_1 = [expr('Load(C1 , P1, SFO)'), + expr('Fly(P1, SFO, JFK)'), + expr('Unload(C1, P1, JFK)'), + expr('Load(C2, P2, JFK)'), + expr('Fly(P2, JFK, SFO)'), + expr('Unload(C2, P2, SFO)')] for action in solution_1: p.act(action) @@ -45,12 +45,12 @@ def test_air_cargo_1(): def test_air_cargo_2(): p = air_cargo() assert p.goal_test() is False - solution_2 = [expr("Load(C1 , P1, SFO)"), - expr("Fly(P1, SFO, JFK)"), - expr("Unload(C1, P1, JFK)"), - expr("Load(C2, P1, JFK)"), - expr("Fly(P1, JFK, SFO)"), - expr("Unload(C2, P1, SFO)")] + solution_2 = [expr('Load(C1 , P1, SFO)'), + expr('Fly(P1, SFO, JFK)'), + expr('Unload(C1, P1, JFK)'), + expr('Load(C2, P1, JFK)'), + expr('Fly(P1, JFK, SFO)'), + expr('Unload(C2, P1, SFO)')] for action in solution_2: p.act(action) @@ -61,12 +61,12 @@ def test_air_cargo_2(): def test_air_cargo_3(): p = air_cargo() assert p.goal_test() is False - solution_3 = [expr("Load(C2, P2, JFK)"), - expr("Fly(P2, JFK, SFO)"), - expr("Unload(C2, P2, SFO)"), - expr("Load(C1 , P1, SFO)"), - expr("Fly(P1, SFO, JFK)"), - expr("Unload(C1, P1, JFK)")] + solution_3 = [expr('Load(C2, P2, JFK)'), + expr('Fly(P2, JFK, SFO)'), + expr('Unload(C2, P2, SFO)'), + expr('Load(C1 , P1, SFO)'), + expr('Fly(P1, SFO, JFK)'), + expr('Unload(C1, P1, JFK)')] for action in solution_3: p.act(action) @@ -77,12 +77,12 @@ def test_air_cargo_3(): def test_air_cargo_4(): p = air_cargo() assert p.goal_test() is False - solution_4 = [expr("Load(C2, P2, JFK)"), - expr("Fly(P2, JFK, SFO)"), - expr("Unload(C2, P2, SFO)"), - expr("Load(C1, P2, SFO)"), - expr("Fly(P2, SFO, JFK)"), - expr("Unload(C1, P2, JFK)")] + solution_4 = [expr('Load(C2, P2, JFK)'), + expr('Fly(P2, JFK, SFO)'), + expr('Unload(C2, P2, SFO)'), + expr('Load(C1, P2, SFO)'), + expr('Fly(P2, SFO, JFK)'), + expr('Unload(C1, P2, JFK)')] for action in solution_4: p.act(action) @@ -93,9 +93,9 @@ def test_air_cargo_4(): def test_spare_tire_1(): p = spare_tire() assert p.goal_test() is False - solution_1 = [expr("Remove(Flat, Axle)"), - expr("Remove(Spare, Trunk)"), - expr("PutOn(Spare, Axle)")] + solution_1 = [expr('Remove(Flat, Axle)'), + expr('Remove(Spare, Trunk)'), + expr('PutOn(Spare, Axle)')] for action in solution_1: p.act(action) @@ -119,9 +119,9 @@ def test_spare_tire_2(): def test_three_block_tower(): p = three_block_tower() assert p.goal_test() is False - solution = [expr("MoveToTable(C, A)"), - expr("Move(B, Table, C)"), - expr("Move(A, Table, B)")] + solution = [expr('MoveToTable(C, A)'), + expr('Move(B, Table, C)'), + expr('Move(A, Table, B)')] for action in solution: p.act(action) @@ -145,8 +145,8 @@ def test_simple_blocks_world(): def test_have_cake_and_eat_cake_too(): p = have_cake_and_eat_cake_too() assert p.goal_test() is False - solution = [expr("Eat(Cake)"), - expr("Bake(Cake)")] + solution = [expr('Eat(Cake)'), + expr('Bake(Cake)')] for action in solution: p.act(action) @@ -514,9 +514,9 @@ def test_double_tennis(): p = double_tennis_problem() assert not goal_test(p.goals, p.initial) - solution = [expr("Go(A, RightBaseLine, LeftBaseLine)"), - expr("Hit(A, Ball, RightBaseLine)"), - expr("Go(A, LeftNet, RightBaseLine)")] + solution = [expr('Go(A, RightBaseLine, LeftBaseLine)'), + expr('Hit(A, Ball, RightBaseLine)'), + expr('Go(A, LeftNet, RightBaseLine)')] for action in solution: p.act(action) diff --git a/utils.py b/utils.py index 68694532e..9576108cf 100644 --- a/utils.py +++ b/utils.py @@ -715,13 +715,10 @@ def __call__(self, *args): # Equality and repr def __eq__(self, other): """x == y' evaluates to True or False; does not build an Expr.""" - return (isinstance(other, Expr) - and self.op == other.op - and self.args == other.args) + return isinstance(other, Expr) and self.op == other.op and self.args == other.args def __lt__(self, other): - return (isinstance(other, Expr) - and str(self) < str(other)) + return isinstance(other, Expr) and str(self) < str(other) def __hash__(self): return hash(self.op) ^ hash(self.args) diff --git a/utils4e.py b/utils4e.py index 3dfd6c100..d23d168e5 100644 --- a/utils4e.py +++ b/utils4e.py @@ -203,8 +203,7 @@ def histogram(values, mode=0, bin_function=None): bins[val] = bins.get(val, 0) + 1 if mode: - return sorted(list(bins.items()), key=lambda x: (x[1], x[0]), - reverse=True) + return sorted(list(bins.items()), key=lambda x: (x[1], x[0]), reverse=True) else: return sorted(bins.items()) @@ -495,25 +494,16 @@ def f(self, x): return max(0, x) def derivative(self, value): - if value > 0: - return 1 - else: - return 0 + return 1 if value > 0 else 0 class elu(Activation): def f(self, x, alpha=0.01): - if x > 0: - return x - else: - return alpha * (math.exp(x) - 1) + return x if x > 0 else alpha * (math.exp(x) - 1) def derivative(self, value, alpha=0.01): - if value > 0: - return 1 - else: - return alpha * math.exp(value) + return 1 if value > 0 else alpha * math.exp(value) class tanh(Activation): @@ -522,22 +512,16 @@ def f(self, x): return np.tanh(x) def derivative(self, value): - return (1 - (value ** 2)) + return 1 - (value ** 2) class leaky_relu(Activation): def f(self, x, alpha=0.01): - if x > 0: - return x - else: - return alpha * x + return x if x > 0 else alpha * x def derivative(self, value, alpha=0.01): - if value > 0: - return 1 - else: - return alpha + return 1 if value > 0 else alpha def step(x): @@ -815,7 +799,7 @@ def __rmatmul__(self, lhs): return Expr('@', lhs, self) def __call__(self, *args): - "Call: if 'f' is a Symbol, then f(0) == Expr('f', 0)." + """Call: if 'f' is a Symbol, then f(0) == Expr('f', 0).""" if self.args: raise ValueError('can only do a call for a Symbol, not an Expr') else: @@ -823,10 +807,11 @@ def __call__(self, *args): # Equality and repr def __eq__(self, other): - "'x == y' evaluates to True or False; does not build an Expr." - return (isinstance(other, Expr) - and self.op == other.op - and self.args == other.args) + """'x == y' evaluates to True or False; does not build an Expr.""" + return isinstance(other, Expr) and self.op == other.op and self.args == other.args + + def __lt__(self, other): + return isinstance(other, Expr) and str(self) < str(other) def __hash__(self): return hash(self.op) ^ hash(self.args)