-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathgraph_builder.py
800 lines (660 loc) · 33.2 KB
/
graph_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
import warnings
from copy import deepcopy, copy
import numpy as np
from scipy.spatial import Voronoi, ConvexHull
from networkx import MultiDiGraph
from pyxtal import pyxtal
from pymatgen.core.structure import Structure
from pymatgen.core.periodic_table import Element
from pymatgen.optimization.neighbors import find_points_in_spheres
from typing import Union, Optional, Any
def get_symmetrized_graph(structure: Union[Structure, pyxtal]) -> MultiDiGraph:
"""Builds a unit graph without any edges, but with symmetry information as node attributes.
Each node has a `asymmetric_mapping` attribute,
which contains the id of the symmetry-equivalent atom in the asymmetric unit.
Each node has a `symmop` attribute,
which contains the affine matrix to generate the position (in fractional coordinates) of the atom,
from its symmetry-equivalent atom position in the asymmetric unit.
Each node has a `multiplicity` attribute,
which contains the multiplicity of the atom (how many symmetry-equivalent atoms there are for this node).
The resulting graph will have a `spacegroup` attribute, that specifies the spacegroup of the crystal.
Args:
structure (Union[Structure, pyxtal]): Crystal structure to convert to a graph.
Raises:
ValueError: If the argument is not a pymatgen Structure or pyxtal object.
Returns:
MultiDiGraph: Unit graph with symmetry information, but without any edges for the crystal.
"""
graph = MultiDiGraph()
if isinstance(structure, pyxtal):
pyxtal_cell = structure
elif isinstance(structure, Structure):
try:
pyxtal_cell = pyxtal()
pyxtal_cell.from_seed(structure)
except:
# use trivial spacegroup (with spacegroup number == 1)
# if spglib isn't able to calculate symmetries
frac_coords = np.array([site.frac_coords for site in structure.sites])
frac_coords = _to_unit_cell(frac_coords)
for node_idx, site in enumerate(structure.sites):
graph.add_node(node_idx, atomic_number=site.specie.number,
asymmetric_mapping=node_idx,
frac_coords=frac_coords[node_idx],
coords=site.coords,
symmop=np.eye(4),
multiplicity=1)
setattr(graph, 'lattice_matrix', structure.lattice.matrix)
setattr(graph, 'spacegroup', 1)
return graph
else:
raise ValueError("This method takes either a pymatgen.core.structure.Structure or a pyxtal object.")
atomic_numbers, frac_coords, asymmetric_mapping, symmops, multiplicities = [], [], [], [], []
for site in pyxtal_cell.atom_sites:
atomic_numbers += (site.multiplicity * [Element(site.specie).Z])
asymmetric_mapping += (site.multiplicity * [len(asymmetric_mapping)])
frac_coords.append(site.coords)
symmops += [symmop.affine_matrix for symmop in site.wp.ops]
multiplicities += (site.multiplicity * [site.multiplicity])
frac_coords = _to_unit_cell(np.vstack(frac_coords))
lattice = pyxtal_cell.lattice.matrix
coords = frac_coords @ lattice
for node_idx in range(len(atomic_numbers)):
graph.add_node(node_idx, atomic_number=atomic_numbers[node_idx],
asymmetric_mapping=asymmetric_mapping[node_idx],
frac_coords=frac_coords[node_idx],
coords=coords[node_idx],
symmop=symmops[node_idx],
multiplicity=multiplicities[node_idx])
setattr(graph, 'lattice_matrix', lattice)
setattr(graph, 'spacegroup', pyxtal_cell.group.number)
return graph
def structure_to_empty_graph(structure: Union[Structure, pyxtal], symmetrize: bool = False) -> MultiDiGraph:
"""Builds an unit graph without any edges.
Args:
structure (Union[Structure, pyxtal]): Crystal structure to convert to a graph.
symmetrize (bool, optional): Whether to include symmetry information attributes
(`asymmetric_mapping`, `symmop`, `multiplicity` attributes) in nodes and graph
(`spacegroup` atribute).
Defaults to False.
symmetrize (bool): Whether to get symmetrized graph.
Raises:
ValueError: If the argument is not a pymatgen Structure or pyxtal object.
Returns:
MultiDiGraph: Unit graph without any edges for the crystal.
"""
if symmetrize:
return get_symmetrized_graph(structure)
else:
if isinstance(structure, pyxtal):
structure = structure.to_pymatgen()
graph = MultiDiGraph()
frac_coords = np.array([site.frac_coords for site in structure.sites])
frac_coords = _to_unit_cell(frac_coords)
for node_idx, site in enumerate(structure.sites):
graph.add_node(node_idx, atomic_number=site.specie.number,
frac_coords=frac_coords[node_idx],
coords=site.coords,
**site.properties)
setattr(graph, 'lattice_matrix', structure.lattice.matrix)
return graph
def add_knn_bonds(graph: MultiDiGraph, k: int = 12, max_radius: float = 10.,
tolerance: Optional[float] = None, inplace: bool = False) -> MultiDiGraph:
"""Adds kNN-based edges to a unit cell graph.
Args:
graph (MultiDiGraph): The unit cell graph to add kNN-based edges to.
k (int, optional): How many neighbors to add for each node. Defaults to 12.
max_radius (float, optional): This parameter has no effect on the outcome of the graph.
It may only on the runtime.
The algorithm starts the kNN search in the environment the radius of max_radius.
If the kth neighbor is not within this radius the algorithm is called again with twice the initial radius.
Defaults to 10.
tolerance (Optional[float], optional): If tolerance is not None,
edges with distances of the k-th nearest neighbor plus the tolerance value are included in the graph.
Defaults to None.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: Graph with added edges.
"""
lattice = _get_attr_from_graph(graph, "lattice_matrix", make_copy=True)
frac_coords = np.array([data[1] for data in graph.nodes(data='frac_coords')])
coords = frac_coords @ lattice
if max_radius is None:
max_radius = _estimate_nn_radius_from_density(k, coords, lattice, 0.1)
# return coords, lattice
index1, index2, offset_vectors, distances = find_points_in_spheres(
coords,
coords,
r=max_radius,
pbc=np.array([True] * 3, dtype=int),
lattice=lattice,
tol=1e-8
)
offset_vectors = offset_vectors.astype('i2')
# Remove self_loops:
no_self_loops = np.argwhere(~np.isclose(distances, 0)).reshape(-1)
index1 = index1[no_self_loops]
index2 = index2[no_self_loops]
offset_vectors = offset_vectors[no_self_loops]
distances = distances[no_self_loops]
new_graph = graph if inplace else deepcopy(graph)
for node_idx in range(new_graph.number_of_nodes()):
idxs = np.argwhere(index1 == node_idx)[:, 0]
sorted_idxs = idxs[np.argsort(distances[idxs])]
if len(sorted_idxs) < k:
return add_knn_bonds(new_graph, k=k, max_radius=max_radius * 2, inplace=True)
if tolerance is not None:
cutoff = distances[sorted_idxs[k - 1]] + tolerance
edge_idxs = idxs[np.argwhere(distances[idxs] <= cutoff)][:, 0]
else:
edge_idxs = sorted_idxs[:k]
# If the max_radius doesn't capture k neighbors, try again with double the max_radius
for edge_idx in edge_idxs:
new_graph.add_edge(
index2[edge_idx], index1[edge_idx],
cell_translation=offset_vectors[edge_idx], distance=distances[edge_idx])
return new_graph
def add_radius_bonds(graph: MultiDiGraph, radius: float = 5., inplace: bool = False) -> MultiDiGraph:
"""Adds radius-based edges to a unit cell graph.
Args:
graph (MultiDiGraph): The unit cell graph to add radius-based edges to.
radius (float, optional): Cutoff radius for each atom in Angstrom units. Defaults to 5.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: Graph with added edges.
"""
new_graph = graph if inplace else deepcopy(graph)
lattice = _get_attr_from_graph(graph, "lattice_matrix", make_copy=True)
frac_coords = np.array([data[1] for data in graph.nodes(data='frac_coords')])
coords = frac_coords @ lattice
index1, index2, offset_vectors, distances = find_points_in_spheres(
coords, coords, r=radius, pbc=np.array([True] * 3, dtype=int), lattice=lattice, tol=1e-8)
offset_vectors = offset_vectors.astype('i2')
# Remove self_loops:
no_self_loops = np.argwhere(~np.isclose(distances, 0)).reshape(-1)
index1 = index1[no_self_loops]
index2 = index2[no_self_loops]
offset_vectors = offset_vectors[no_self_loops]
distances = distances[no_self_loops]
if len(index1) == 0:
warnings.warn(
'No edges added to the graph, consider increasing the radius and check your graph input instance.')
for source, target, cell_translation, dist in zip(index2, index1, offset_vectors, distances):
new_graph.add_edge(source, target, cell_translation=cell_translation, distance=dist)
return new_graph
def add_voronoi_bonds(graph: MultiDiGraph, min_ridge_area: Optional[float] = None,
inplace: bool = False) -> MultiDiGraph:
"""Adds Voronoi-based edges to a unit cell graph.
Args:
graph (MultiDiGraph): The unit cell graph to add radius-based edges to.
min_ridge_area (Optional[float], optional): Threshold value for ridge area between two Voronoi cells.
If a ridge area between two voronoi cells is smaller than this value the corresponding edge between
the atoms of the cells is excluded from the graph. Defaults to None.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: Graph with added edges.
"""
new_graph = graph if inplace else deepcopy(graph)
lattice = _get_attr_from_graph(graph, "lattice_matrix")
frac_coords = np.array([data[1] for data in graph.nodes(data='frac_coords')])
dim = lattice.shape[0]
assert dim == 3
size = np.array([1, 1, 1])
expanded_frac_coords = _get_super_cell_grid_frac_coords(lattice, frac_coords, size)
expanded_coords = expanded_frac_coords @ lattice
flattened_expanded_coords = expanded_coords.reshape(-1, dim)
voronoi = Voronoi(flattened_expanded_coords)
ridge_points_unraveled = np.array(np.unravel_index(voronoi.ridge_points, expanded_coords.shape[:-1]))
# shape: (num_ridges, 2 (source, target), 4 (3 cell_index + 1 atom_index))
ridge_points_unraveled = np.moveaxis(ridge_points_unraveled, np.arange(dim), np.roll(np.arange(dim), 1))
# Filter ridges that have source in the centered unit cell
source_in_center_cell = np.argwhere(np.all(ridge_points_unraveled[:, 0, :dim] == 1, axis=-1))[:, 0]
# Filter ridges that have target in the centered unit cell
target_in_center_cell = np.argwhere(np.all(ridge_points_unraveled[:, 1, :dim] == 1, axis=-1))[:, 0]
edge_info = np.vstack(
[ridge_points_unraveled[source_in_center_cell][:, [1, 0]], ridge_points_unraveled[target_in_center_cell]])
cell_translations = (edge_info[:, 0, :-1] - size).astype(float)
edge_indices = edge_info[:, :, -1]
distances = []
for i in range(len(edge_indices)):
d = np.linalg.norm(expanded_coords[tuple(edge_info[i][0])] - expanded_coords[tuple(edge_info[i][1])])
distances.append(d)
if min_ridge_area is not None:
ridge_vertices = [voronoi.ridge_vertices[i] for i in
np.concatenate([source_in_center_cell, target_in_center_cell])]
ridge_areas = [get_ridge_area(voronoi.vertices[idxs]) for idxs in ridge_vertices]
for nodes, cell_translation, dist, ridge_area in zip(edge_indices, cell_translations, distances, ridge_areas):
source, target = nodes[0], nodes[1]
if ridge_area > min_ridge_area:
new_graph.add_edge(source, target, cell_translation=cell_translation, distance=dist,
voronoi_ridge_area=ridge_area)
else:
for nodes, cell_translation, dist in zip(edge_indices, cell_translations, distances):
source, target = nodes[0], nodes[1]
new_graph.add_edge(source, target, cell_translation=cell_translation, distance=dist)
return new_graph
def remove_duplicate_edges(graph: MultiDiGraph, inplace=False) -> MultiDiGraph:
"""Removes duplicate edges with same offset.
Args:
graph (MultiDiGraph): The unit cell graph with edges to remove.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: The graph without duplicate edges.
"""
new_graph = graph if inplace else deepcopy(graph)
edge_counter = set()
remove_edges = set()
for e in new_graph.edges(data='cell_translation', keys=True):
id_ = (e[0], e[1]) + tuple(e[3].astype(int))
if id_ in edge_counter:
remove_edges.add((e[0], e[1], e[2]))
else:
edge_counter.add(id_)
for edge in remove_edges:
new_graph.remove_edge(edge[0], edge[1], key=edge[2])
return new_graph
def prune_knn_bonds(graph: MultiDiGraph, k: int = 12, tolerance: Optional[float] = None,
inplace: bool = False) -> MultiDiGraph:
"""Prunes edges of a graph to only the k with the smallest distance value.
Args:
graph (MultiDiGraph): The unit cell graph with edges to prune.
k (int, optional): How many neighbors each node should maximally have. Defaults to 12.
tolerance (Optional[float], optional): If tolerance is not None,
edges with distances of the k-th nearest neighbor plus the tolerance value are included in the graph.
Defaults to None.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: The graph with pruned edges.
"""
new_graph = graph if inplace else deepcopy(graph)
delete_edges = []
for n in new_graph:
edges = list(new_graph.in_edges(n, data='distance', keys=True))
edges.sort(key=lambda x: x[3])
if tolerance is not None:
radius = edges[k][3] + tolerance
delete_edges += [e[:3] for e in edges if e[3] > radius]
else:
delete_edges += [e[:3] for e in edges[k:]]
new_graph.remove_edges_from(delete_edges)
return new_graph
def prune_radius_bonds(graph: MultiDiGraph, radius: float = 4., inplace: bool = False) -> MultiDiGraph:
"""Prunes edges of a graph with larger distance than the specified radius.
Args:
graph (MultiDiGraph): The unit cell graph with edges to prune.
radius (float, optional): Distance threshold. Edges with larger distance than this value are
removed from the graph. Defaults to 4.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: The graph with pruned edges.
"""
new_graph = graph if inplace else deepcopy(graph)
delete_edges = []
for e in new_graph.edges(data='distance', keys=True):
if e[3] > radius:
delete_edges.append(e[:3])
new_graph.remove_edges_from(delete_edges)
return new_graph
def prune_voronoi_bonds(graph: MultiDiGraph, min_ridge_area: Optional[float] = None,
inplace: bool = False) -> MultiDiGraph:
"""Prunes edges of a graph with a voronoi ridge are smaller then the specified min_ridge_area.
Only works for graphs with edges that contain `voronoi_ridge_area` as edge attributes.
Args:
graph (MultiDiGraph): The unit cell graph with edges to prune.
min_ridge_area (Optional[float], optional): Threshold value for ridge area between two Voronoi cells.
If a ridge area between two voronoi cells is smaller than this value the corresponding edge between
the atoms of the cells is excluded from the graph. Defaults to None.
inplace (bool, optional): Whether to add the edges to the given graph or create a copy with added edges.
Defaults to False.
Returns:
MultiDiGraph: The graph with pruned edges.
"""
new_graph = graph if inplace else deepcopy(graph)
if min_ridge_area is None:
return new_graph
delete_edges = []
for e in new_graph.edges(data='voronoi_ridge_area', keys=True):
if e[3] < min_ridge_area:
delete_edges.append(e[:3])
new_graph.remove_edges_from(delete_edges)
return new_graph
def add_edge_information(graph: MultiDiGraph, inplace=False,
frac_offset=False, offset=True, distance=True) -> MultiDiGraph:
"""Adds edge information, such as offset ( `frac_offset`, `offset` ) and distances ( `distance` ) to edges.
Args:
graph (MultiDiGraph): Graph for which to add edge information.
inplace (bool, optional): Whether to add the edge information to the given graph
or create a copy with added edges.
Defaults to False.
frac_offset (bool, optional): Whether to add fractional offsets (`frac_offset` attribute) to edges.
Defaults to False.
offset (bool, optional): Whether to add offsets (`offset` attribute) to edges.
Defaults to True.
distance (bool, optional): Whether to add distances (`distance` attribute) to edges.
Defaults to True.
Returns:
MultiDiGraph: The graph with added edge information.
"""
new_graph = graph if inplace else deepcopy(graph)
if graph.number_of_edges() == 0:
return new_graph
add_frac_offset = frac_offset
add_offset = offset
add_distance = distance
frac_coords1 = []
frac_coords2 = []
cell_translations = []
# Collect necessary coordinate information for calculations
for e in new_graph.edges(data='cell_translation'):
frac_coords1.append(new_graph.nodes[e[0]]['frac_coords'])
cell_translations.append(e[2])
frac_coords2.append(new_graph.nodes[e[1]]['frac_coords'])
# Do calculations in vectorized form (instead of doing it inside the edge loop)
frac_coords1 = np.array(frac_coords1)
frac_coords2 = np.array(frac_coords2)
cell_translations = np.array(cell_translations)
frac_offset = frac_coords2 - (frac_coords1 + cell_translations)
offset = frac_offset @ _get_attr_from_graph(new_graph, "lattice_matrix")
if add_distance:
distances = np.linalg.norm(offset, axis=-1)
else:
distances = None
# Add calculated information to edge attributes
for i, e in enumerate(new_graph.edges(data=True)):
if add_frac_offset:
e[2]['frac_offset'] = frac_offset[i]
if add_offset:
e[2]['offset'] = offset[i]
if add_distance:
e[2]['distance'] = distances[i]
return new_graph
def to_non_periodic_unit_cell(graph: MultiDiGraph, add_reverse_edges: bool = True,
inplace: bool = False) -> MultiDiGraph:
"""Generates non-periodic graph representation from unit cell graph representation.
Args:
graph (MultiDiGraph): Unit cell graph to generate non-periodic graph for.
add_reverse_edges (bool, optional): Whether to add incoming edges to atoms
that lie outside the central unit cell.
Defaults to True.
inplace (bool, optional): Whether to add distances (`distance` attribute) to edges.
Defaults to False.
Returns:
MultiDiGraph: Corresponding non-periodic graph for the given unit cell graph.
"""
new_graph = graph if inplace else deepcopy(graph)
new_nodes = dict()
new_edges = []
delete_edges = []
node_counter = new_graph.number_of_nodes()
for e in new_graph.edges(data=True, keys=True):
cell_translation = e[3]['cell_translation']
if np.any(cell_translation != 0):
node_key = (e[0],) + tuple(cell_translation)
if node_key not in new_nodes.keys():
node_attrs = copy(new_graph.nodes[e[0]])
node_attrs['frac_coords'] = new_graph.nodes[e[0]]['frac_coords'] + cell_translation
node_attrs['coords'] = node_attrs['frac_coords'] @ _get_attr_from_graph(new_graph, "lattice_matrix")
new_nodes[node_key] = (node_counter, node_attrs)
node_counter += 1
node_number, _ = new_nodes[node_key]
edge_attrs1 = deepcopy(e[3])
new_edges.append((node_number, e[1], edge_attrs1))
if add_reverse_edges:
edge_attrs2 = deepcopy(e[3])
if 'frac_offset' in e[3].keys():
edge_attrs2['frac_offset'] = -e[3]['frac_offset']
if 'offset' in e[3].keys():
edge_attrs2['offset'] = -e[3]['offset']
new_edges.append((e[1], node_number, edge_attrs2))
delete_edges.append((e[0], e[1], e[2]))
new_graph.remove_edges_from(delete_edges)
for node_number, node_attrs in new_nodes.values():
new_graph.add_node(node_number, **node_attrs)
for e in new_edges:
new_graph.add_edge(e[0], e[1], **e[2])
return new_graph
def to_supercell_graph(graph: MultiDiGraph, size) -> MultiDiGraph:
"""Generates super-cell graph representation from unit cell graph representation.
Args:
graph (MultiDiGraph): Unit cell graph to generate super cell graph for.
size (list): How many cells the crystal will get expanded into each dimension.
Returns:
MultiDiGraph: Corresponding super cell graph for the given unit cell graph.
"""
supercell_graph = MultiDiGraph()
size_ = list(size) + [graph.number_of_nodes()]
new_num_nodes = np.prod(size_)
for node in range(new_num_nodes):
idx = np.unravel_index(node, size_)
cell_translation = idx[:3]
node_num = idx[3]
data = deepcopy(graph.nodes[node_num])
data['frac_coords'] = data['frac_coords'] + np.array(cell_translation)
data['coords'] = data['frac_coords'] @ _get_attr_from_graph(graph, "lattice_matrix")
supercell_graph.add_node(node, **data)
for edge in graph.edges(data=True):
for cell_idx in range(np.prod(size)):
cell_translation1 = np.unravel_index(cell_idx, size)
cell_translation2 = (edge[2]['cell_translation'] + np.array(cell_translation1)).astype(int)
if np.all(cell_translation2 >= 0) and np.all(cell_translation2 < size):
new_source = np.ravel_multi_index(list(cell_translation2) + [edge[0]], size_)
new_target = np.ravel_multi_index(list(cell_translation1) + [edge[1]], size_)
data = deepcopy(edge[2])
# del data['cell_translation']
supercell_graph.add_edge(new_source, new_target, **data)
setattr(supercell_graph, 'lattice_matrix', _get_attr_from_graph(graph, "lattice_matrix"))
if hasattr(graph, 'spacegroup'):
setattr(supercell_graph, 'spacegroup', graph.spacegroup)
return supercell_graph
def to_asymmetric_unit_graph(graph: MultiDiGraph) -> MultiDiGraph:
"""Generates super cell graph representation from unit cell graph representation.
Args:
graph (MultiDiGraph): Unit cell graph to generate asymmetric unit graph for.
Returns:
MultiDiGraph: Corresponding asymmetric unit graph for the given unit cell graph.
"""
asymmetric_mapping = np.array([node[1] for node in graph.nodes(data='asymmetric_mapping')])
if None in asymmetric_mapping:
raise ValueError(
"".join([
"Graph does not contain symmetry information. ",
"Make sure to create the graph with `structure_to_empty_graph` ",
"with the `symmetrize` argument set to `True` ."
])
)
asu_node_indice, inv_asymmetric_mapping = np.unique(asymmetric_mapping, return_inverse=True)
asu_graph = MultiDiGraph()
setattr(asu_graph, 'lattice_matrix', _get_attr_from_graph(graph, "lattice_matrix"))
setattr(asu_graph, 'spacegroup', _get_attr_from_graph(graph, "spacegroup"))
new_nodes_idx = {}
# Add nodes of asymmetric unit to asu_graph
for i, node_idx in enumerate(asu_node_indice):
new_nodes_idx[node_idx] = i
data = deepcopy(graph.nodes[node_idx])
data['unit_cell_index'] = data['asymmetric_mapping']
del data['asymmetric_mapping']
del data['symmop']
asu_graph.add_node(i, **data)
if graph.number_of_edges() == 0:
return asu_graph
edges_to_keep = graph.in_edges(asu_node_indice, data=True)
for e in edges_to_keep:
source_data = graph.nodes[e[0]]
new_source_idx = inv_asymmetric_mapping[e[0]]
new_target_idx = new_nodes_idx[e[1]]
data = deepcopy(e[2])
data['symmop'] = source_data['symmop']
asu_graph.add_edge(new_source_idx, new_target_idx, **data)
return asu_graph
def _to_unit_cell(frac_coords):
r"""Converts fractional coords to be within the :math:`[0,1)` interval.
Args:
frac_coords: Fractional coordinates to map into :math:`[0,1)` interval.
Returns:
Fractional coordinates within the [0,1) interval.
"""
return frac_coords % 1. % 1.
def get_ridge_area(ridge_points):
"""Computes the ridge area given ridge points.
Beware that this function, assumes that the ridge points are (roughly) within a flat subspace plane
in the 3 dimensional space.
It computes the area of the convex hull of the points in three dimensions and then divides it by two,
since both sides of the flat convex hull are included.
Args:
ridge_points (np.ndarray): Ridge points to calculate area for.
Returns:
float: Ridge area for the given points.
"""
while ridge_points.shape[0] <= 3:
# Append copy of points to avoid QHull Error
ridge_points = np.append(ridge_points, np.expand_dims(ridge_points[0], 0), 0)
area = ConvexHull(ridge_points, qhull_options='QJ').area / 2
return area
def pairwise_diff(coords1: np.ndarray, coords2: np.ndarray) -> np.ndarray:
"""Get the pairwise offset difference between two vector sets.
Args:
coords1 (np.ndarray): Coordinates of shape (..., n, 3)
coords2 (np.ndarray): Coordinates of shape (..., m, 3)
Returns:
np.ndarray: Difference values of shape (..., n, m, 3)
"""
# This can be solved more elegantly with normal broadcasting
# TODO: Check if the same.
def _reshape_at_axis(arr, axis, new_shape):
# move reshape axis to last axis position, because np.reshape reshapes this first
arr_tmp = np.moveaxis(arr, axis, -1)
shape = arr_tmp.shape[:-1] + new_shape
new_positions = np.arange(len(new_shape)) + axis
old_positions = np.arange(len(new_shape)) + (len(arr.shape) - 1)
# now call np.reshape and move axis to right position
return np.moveaxis(arr_tmp.reshape(shape), old_positions, new_positions)
# Difference calculated at last axis of both inputs
assert coords1.shape[-1] == coords2.shape[-1]
coords1_reshaped = coords1.reshape(-1, coords1.shape[-1])
coords2_reshaped = coords2.reshape(-1, coords2.shape[-1])
diffs = np.expand_dims(coords2_reshaped, 0) - np.expand_dims(coords1_reshaped, 1)
return _reshape_at_axis(_reshape_at_axis(diffs, 1, coords2.shape[:-1]), 0, coords1.shape[:-1])
def _get_mesh(size: Union[int, list, tuple], dim: int) -> np.ndarray:
"""Utility function to create a numpy mesh grid with indices at last dimension.
Args:
size (int, list): Size of each dimension.
dim (int): Dimension of the grid.
Returns:
np.ndarray: Mesh grid of form:
"""
if isinstance(size, int):
size = [size] * dim
else:
size = list(size)
assert len(size) == dim
mesh = np.array(np.meshgrid(*tuple([np.arange(i) for i in size])))
mesh = np.moveaxis(mesh, [0, 1], [-1, 1])
return mesh
def _get_cube(dim: int) -> np.ndarray:
"""Generate a cubic mesh.
Args:
dim (int): Dimension for cubic mesh.
Returns:
np.ndarray: Cubic mesh.
"""
return _get_mesh(2, dim)
def _get_max_diameter(lattice: np.ndarray) -> Union[float, np.ndarray]:
"""Determine the max diameter of a lattice.
Args:
lattice (np.ndarray): Lattice matrix.
Returns:
np.ndarray: Max diameter of the lattice.
"""
dim = lattice.shape[0]
cube = _get_cube(dim)
max_radius = np.max(np.linalg.norm((cube - 1 / 2) @ lattice, axis=1))
return max_radius * 2
def _get_super_cell_grid_frac_coords(lattice: np.ndarray, frac_coords: np.ndarray, size: Union[int, list, np.ndarray]):
"""Get frac coordinates for positions in a grid of unit cells that is a cubic super-cell.
..code - block:: python
import numpy as np
from kgcnn.crystal.graph_builder import _get_super_cell_grid_frac_coords
coordinates = _get_super_cell_grid_frac_coords(
np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.5], [0.0, 0.5, 1.5]]),
np.array([[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]]),
[3, 3, 3]
)
print(coordinates.shape) # (7, 7, 7, 2, 3)
Args:
lattice (np.ndarray): Lattice matrix.
frac_coords (np.ndarray): Fractional coordinates of atoms in unit cell.
size (list): Size of the super-cell in each dimension.
Returns:
np.ndarray: List of fractional coordinates of atoms in the super-cell.
"""
dim = lattice.shape[0]
if isinstance(size, int):
size = [size] * dim
else:
size = list(size)
assert len(size) == dim
doubled_size = np.array(size) * 2 + 1
mesh = _get_mesh(doubled_size, dim)
# frac_coords_expanded.shape == (1,1,1,num_atoms,3) (for dim == 3)
# noinspection PyTypeChecker
frac_coords_expanded = np.expand_dims(frac_coords, np.arange(dim).tolist())
# mesh_expanded.shape == (double_size[0], double_size[1], double_size[2], 1, 3) (for dim == 3)
mesh_expanded = np.expand_dims(mesh - size, -2)
expanded_frac_coords = mesh_expanded + frac_coords_expanded
return expanded_frac_coords
def _get_attr_from_graph(graph: MultiDiGraph, attr_name: str, make_copy: bool = False) -> Union[Any, np.ndarray]:
"""Utility function to obtain graph-level information of the underlying crystal.
Args:
graph (MultiDiGraph): Networkx graph object.
attr_name (str): Name of the attribute.
make_copy (bool): Copy crystal-graph attribute.
Returns:
np.ndarray: Crystal information.
"""
if hasattr(graph, attr_name):
if make_copy:
out = deepcopy(getattr(graph, attr_name))
else:
out = getattr(graph, attr_name)
else:
raise AttributeError("Must attach attribute '%s' of crystal information to networkx graph." % attr_name)
return out
def _estimate_nn_radius_from_density(k: int, coordinates: np.ndarray, lattice: np.ndarray,
empirical_tol_factor: float = 0.0):
"""Rough estimate of the expected radius to find N nearest neighbours.
Args:
k (int): Number of neighbours.
coordinates (np.ndarray): Coordinates array.
lattice (np.ndarray): Lattice matrix.
empirical_tol_factor (float): Tolerance factor for radius.
Returns:
float: estimated radius
"""
volume_unit_cell = np.sum(np.abs(np.cross(lattice[0], lattice[1]) * lattice[2]))
density_unit_cell = len(coordinates) / volume_unit_cell
estimated_nn_volume = k / density_unit_cell # + len(coordinates)/density_unit_cell
estimated_nn_radius = abs(float(np.cbrt(estimated_nn_volume / np.pi * 3 / 4)))
estimated_nn_radius = estimated_nn_radius * (1.0 + empirical_tol_factor)
return estimated_nn_radius
def _get_geometric_properties_of_unit_cell(coordinates: np.ndarray, lattice: np.ndarray):
"""Diameter of a 3D unit cell and other properties.
Args:
coordinates (np.ndarray): Coordinates array.
lattice (np.ndarray): Lattice matrix.
Returns:
tuple: (center_unit_cell, max_diameter_cell, volume_unit_cell, density_unit_cell)
"""
# lattice_col = np.transpose(lattice)
lattice_row = lattice
center_unit_cell = np.sum(lattice_row, axis=0, keepdims=True) / 2 # (1, 3)
max_radius_cell = np.amax(np.sqrt(np.sum(np.square(lattice_row - center_unit_cell), axis=-1)))
max_diameter_cell = 2 * max_radius_cell
volume_unit_cell = np.sum(np.abs(np.cross(lattice[0], lattice[1]) * lattice[2]))
density_unit_cell = len(coordinates) / volume_unit_cell
return center_unit_cell[0], max_diameter_cell, volume_unit_cell, density_unit_cell