-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinearRegressionModel.py
40 lines (33 loc) · 1.21 KB
/
LinearRegressionModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch
import torch.nn as nn
import torch.optim as optim
# Define a simple linear regression model
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(in_features=1, out_features=1)
def forward(self, x):
return self.linear(x)
if __name__ == '__main__':
# Sample dataset
X_train = torch.tensor([[1.0], [2.0], [3.0], [4.0], [5.0]])
y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0], [10.0]])
# Define the model
model = nn.Linear(in_features=1, out_features=1)
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Training loop
num_epochs = 1000
for epoch in range(num_epochs):
optimizer.zero_grad()
outputs = model(X_train)
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
torch.save(model.state_dict(), 'linear_model.pth')
# Test the trained model
X_test = torch.tensor([[6.0]])
predicted_value = model(X_test)
print(f'Predicted value for input 6: {predicted_value.item()}')