-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
428 lines (369 loc) · 13.9 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import numpy as np
import matplotlib.pyplot as plt
import time
import pickle
import os
from struct import unpack
import random
from pygenn import genn_model, genn_wrapper
# Data path
root_path = '/home/ajays/Desktop/mnist-pygenn'
mnist_data_path = '/home/ajays/datasets/mnist/'
if not os.path.exists(os.path.join(root_path,'ckpt')):
os.makedirs(os.path.join(root_path,'ckpt'))
# ********************************************************************************
# Methods
# ********************************************************************************
# Load data into dictionary
def get_labeled_data(filename, bTrain = True):
"""Read input-vector (image) and target class (label, 0-9) and return
it as list of tuples.
"""
if os.path.isfile('%s.pickle' % filename):
with open('%s.pickle' % filename, 'rb') as handle:
data = pickle.load(handle)
else:
# Open the images with gzip in read binary mode
if bTrain:
images = open(mnist_data_path + 'train-images-idx3-ubyte','rb')
labels = open(mnist_data_path + 'train-labels-idx1-ubyte','rb')
else:
images = open(mnist_data_path + 't10k-images-idx3-ubyte','rb')
labels = open(mnist_data_path + 't10k-labels-idx1-ubyte','rb')
# Get metadata for images
images.read(4) # skip the magic_number
number_of_images = unpack('>I', images.read(4))[0]
rows = unpack('>I', images.read(4))[0]
cols = unpack('>I', images.read(4))[0]
# Get metadata for labels
labels.read(4) # skip the magic_number
N = unpack('>I', labels.read(4))[0]
if number_of_images != N:
raise Exception('number of labels did not match the number of images')
# Get the data
x = np.zeros((N, rows, cols), dtype=np.uint8) # Initialize numpy array
y = np.zeros((N, 1), dtype=np.uint8) # Initialize numpy array
for i in range(N):
if i % 1000 == 0:
print("i: %i" % i)
x[i] = [[unpack('>B', images.read(1))[0] for unused_col in range(cols)] for unused_row in range(rows) ]
y[i] = unpack('>B', labels.read(1))[0]
data = {'x': x, 'y': y, 'rows': rows, 'cols': cols}
with open('%s.pickle' % filename, 'wb') as handle:
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
return data
def accuracy(predictions, y_list):
return np.sum(np.array(predictions) == np.array(y_list)) / float(len(y_list)) * 100
# ********************************************************************************
# Model Definitions
# ********************************************************************************
# LIF neuron model
# excitatory neurons
lif_e_model = genn_model.create_custom_neuron_class(
"lif_e_model",
param_names=["Tau","Erest","Vreset","Vthres","RefracPeriod","tauTheta"],
var_name_types=[("V","scalar"),("RefracTime","scalar"),("theta","scalar"),("SpikeNumber","unsigned int")],
sim_code="""
if ($(RefracTime) <= 0.0)
{
scalar alpha = $(Erest) + $(Isyn);
$(V) = ($(V) - alpha) * $(ExpTC);
}
else
{
$(RefracTime) -= DT;
$(theta) = $(theta) * $(ExpTtheta);
}
""",
reset_code="""
$(V) = $(Vreset);
$(RefracTime) = $(RefracPeriod);
$(SpikeNumber) += 1;
$(theta) += 1.0;
""",
threshold_condition_code="$(RefracTime) <= 0.0 && $(V) >= $(Vthres) + $(theta)",
derived_params=[
("ExpTC", genn_model.create_dpf_class(lambda pars, dt: np.exp(-dt / pars[0]))()),
("ExpTtheta", genn_model.create_dpf_class(lambda pars, dt: np.exp(-dt / pars[5]))())
]
)
# inhibitory neurons
lif_i_model = genn_model.create_custom_neuron_class(
"lif_i_model",
param_names=["Tau","Erest","Vreset","Vthres","RefracPeriod"],
var_name_types=[("V","scalar"),("RefracTime","scalar"),("SpikeNumber","unsigned int")],
sim_code="""
if ($(RefracTime) <= 0.0)
{
scalar alpha = $(Erest) + $(Isyn);
$(V) = ($(V) - alpha) * $(ExpTC);
}
else
{
$(RefracTime) -= DT;
}
""",
reset_code="""
$(V) = $(Vreset);
$(RefracTime) = $(RefracPeriod);
$(SpikeNumber) += 1;
""",
threshold_condition_code="$(RefracTime) <= 0.0 && $(V) >= $(Vthres)",
derived_params=[
("ExpTC", genn_model.create_dpf_class(lambda pars, dt: np.exp(-dt / pars[0]))())
]
)
# STDP
stdp_model = genn_model.create_custom_weight_update_class(
"stdp_model",
param_names=["tauMinus", "gMax", "Xtar", "mu"],
var_name_types=[("g", "scalar"), ("eta", "scalar")],
pre_var_name_types=[("Xpre", "scalar")],
sim_code=
"""
$(addToInSyn, $(g));
""",
learn_post_code=
"""
const scalar dt = $(t) - $(sT_pre);
if(dt > 0) {
const scalar expXpre = $(Xpre) * exp(-dt / $(tauMinus));
const scalar newG = $(g) - (($(eta) * (expXpre - $(Xtar)) * pow(($(gMax) - $(g)),$(mu))));
$(g) = $(gMax) <= newG ? $(gMax) : newG;
}
""",
pre_spike_code=
"""
const scalar dt = $(t) - $(sT_pre);
if(dt > 0) {
const scalar expXpre = exp(-dt / $(tauMinus));
$(Xpre) = expXpre + 1.0;
}
""",
is_pre_spike_time_required=True,
is_post_spike_time_required=True
)
poisson_model = genn_model.create_custom_neuron_class(
'poisson_model',
var_name_types={('rate','scalar'),('timeStepToSpike','scalar')},
sim_code="""
const scalar isi = 1000.0 / $(rate);
if ($(timeStepToSpike) <= 0.0f) {
$(timeStepToSpike) += isi * $(gennrand_exponential);
}
$(timeStepToSpike) -= 1.0;
""",
threshold_condition_code="$(timeStepToSpike) <= 0.0"
)
lateral_inhibition = genn_model.create_custom_init_var_snippet_class(
"lateral_inhibition",
param_names=["weight"],
var_init_code="$(value)=($(id_pre)==$(id_post)) ? 0.0 : $(weight);"
)
# ********************************************************************************
# Data
# ********************************************************************************
start = time.time()
training = get_labeled_data('training')
end = time.time()
print('time needed to load training set:', end - start)
start = time.time()
testing = get_labeled_data('testing',bTrain = False)
end = time.time()
print('time needed to load test set:', end - start)
# ********************************************************************************
# Parameters and Hyperparameters
# ********************************************************************************
# Hyperparameters
# Global
timestep = 1.0
# Architecture
num_epochs = 3
num_examples = 100
n_input = 784
n_e = 100
n_i = n_e
single_example_time = 350
resting_time = 150
runtime = num_examples * (single_example_time + resting_time)
# Neuron
tau_e = 100
tau_i = 10
e_rest_e = -65
e_rest_i = -60
v_reset_e = -65
v_reset_i = -45
v_thres_e = -52
v_thres_i = -40
refrac_period_e = 5.0
refrac_period_i = 2.0
e_exc = 1000
e_inh = 100
tau_theta_e = 1e7
# Synapse
tau_ge = 1
tau_gi = 2
# STDP
g_max = 1.0
x_tar = 0.002
eta = 0.1
mu = 0.5
# Parameters and initial values
lif_e_params = {
"Tau":tau_e,
"Erest":e_rest_e,
"Vreset":v_reset_e,
"Vthres":v_thres_e,
"RefracPeriod":refrac_period_e,
"tauTheta":tau_theta_e
}
lif_i_params = {
"Tau":tau_i,
"Erest":e_rest_i,
"Vreset":v_reset_i,
"Vthres":v_thres_i,
"RefracPeriod":refrac_period_i
}
lif_e_init = {"V": genn_model.init_var("Uniform",{"min":v_reset_e,"max":v_thres_e}),
"RefracTime":0.0, "SpikeNumber":0, "theta":0.0}
lif_i_init = {"V": genn_model.init_var("Uniform",{"min":v_reset_i,"max":v_thres_i}),
"RefracTime":0.0, "SpikeNumber":0}
stdp_init = {"g":genn_model.init_var("Uniform",{"min":0.0, "max":g_max}), "eta":eta}
stdp_params = {"tauMinus": 20.0,"gMax": g_max,"Xtar":x_tar,"mu":mu}
stdp_pre_init = {"Xpre": 0.0}
# ********************************************************************************
# Model Instances
# ********************************************************************************
model = genn_model.GeNNModel("float","mnist")
# Neuron populations
poisson_pop = model.add_neuron_population("poisson_pop",n_input,poisson_model,{},{'rate':100.0,'timeStepToSpike':0.0})
lif_e_pop = model.add_neuron_population("lif_e_pop",n_e,lif_e_model,lif_e_params,lif_e_init)
lif_i_pop = model.add_neuron_population("lif_i_pop",n_i,lif_i_model,lif_i_params,lif_i_init)
syn_pe_pop = model.add_synapse_population("syn_pe_pop","DENSE_INDIVIDUALG",genn_wrapper.NO_DELAY,
poisson_pop,lif_e_pop,
stdp_model,stdp_params,stdp_init,stdp_pre_init,{},
"ExpCond",{"tau":tau_ge,"E":e_exc},{})
syn_ei_pop = model.add_synapse_population("syn_ei_pop","SPARSE_INDIVIDUALG",genn_wrapper.NO_DELAY,
lif_e_pop,lif_i_pop,
"StaticPulse",{},{"g":genn_model.init_var("Uniform",{"min":0.0, "max":g_max})},{},{},
"ExpCond",{"tau":tau_gi,"E":e_inh},{},genn_model.init_connectivity("OneToOne",{}))
syn_ie_pop = model.add_synapse_population("syn_ie_pop","DENSE_INDIVIDUALG",genn_wrapper.NO_DELAY,
lif_i_pop,lif_e_pop,
"StaticPulse",{},{"g":genn_model.init_var(lateral_inhibition,{"weight":0.1})},{},{},
"ExpCond",{"tau":tau_ge,"E":e_exc},{})
# ********************************************************************************
# Building and Simulation
# ********************************************************************************
model.dT = timestep
print("Building Model")
model.build()
print("Loading Model")
model.load()
# Simulate
print("Simulating")
weight_initial = syn_pe_pop.get_var_values('g')
i=-1
while model.t <= runtime * num_epochs:
if model.t >= (single_example_time+resting_time)*(i+1):
# After example i -1,0,1,2,..
print("Example {}, Time {}".format(int(i%num_examples),model.t))
i += 1
# Before example i 0,1,2,3,...
neuron_view = poisson_pop.vars['timeStepToSpike'].view
neuron_view[:] = 0.0
neuron_view = lif_e_pop.vars['V'].view
neuron_view[:] = random.uniform(v_reset_e,v_thres_e)
model.push_state_to_device('lif_e_pop')
neuron_view = lif_i_pop.vars['V'].view
neuron_view[:] = random.uniform(v_reset_i,v_thres_i)
model.push_state_to_device('lif_i_pop')
rates = list(training['x'][i%num_examples,:,:].reshape((n_input)) / 4)
neuron_view = poisson_pop.vars['rate'].view
neuron_view[:] = rates
model.push_state_to_device('poisson_pop')
model.step_time()
model.pull_var_from_device('syn_pe_pop','g')
weight_final = syn_pe_pop.get_var_values('g')
print(weight_initial)
print(weight_final)
# ********************************************************************************
# Training and Classification
# ********************************************************************************
"""
print()
print("Classifying examples")
# Set eta to 0
input_e_pop.set_var("eta",0.0)
# Set SpikeNumber to 0
lif_e_pop.set_var("SpikeNumber",0)
lif_i_pop.set_var("SpikeNumber",0)
spike_number_record = np.zeros((n_e,10))
i=0
old_spike_number = np.zeros((n_e))
spike_number_record = np.zeros((n_e,10))
# spike_number_view = lif_e_pop.vars["SpikeNumber"].view
rates = list(training['x'][i%60000,:,:].reshape((n_input)) / 8000. * input_intensity)
label = int(training['y'][i%num_examples])
current_t = model.t
while model.t < current_t + runtime:
model.step_time()
if model.t >= current_t + (single_example_time + resting_time) * (i+1):
spike_number_view = lif_e_pop.vars["SpikeNumber"].view
# print(spike_number_view)
# print(current_spike_number - old_spike_number)
spike_number_record[:,label] += spike_number_view
lif_e_pop.set_var("SpikeNumber",0)
# print(spike_number_record)
print("Example: {} Label: {}".format(i,label))
i += 1
rates = list(training['x'][i%60000,:,:].reshape((n_input)) / 8000. * input_intensity)
label = int(training['y'][i%num_examples])
poisson_pop.set_var('frequency', rates)
poisson_pop.set_var('timeStepToSpike',0.0)
lif_e_pop.set_var("SpikeNumber",0)
lif_i_pop.set_var("SpikeNumber",0)
neuron_labels = np.argmax(spike_number_record,axis=1)
print()
print("Neuron labels")
print(neuron_labels)
print(spike_number_record)
# ********************************************************************************
# Evaluation on Training set
# ********************************************************************************
print()
print()
print("Evaluating on training set")
# Set eta to 0
input_e_pop.set_var("eta",0.0)
# Set SpikeNumber to 0
lif_e_pop.set_var("SpikeNumber",0)
lif_i_pop.set_var("SpikeNumber",0)
model.push_state_to_device("lif_e_pop")
model.push_state_to_device("lif_i_pop")
predictions = []
y_list = list(training['y'][:num_examples].reshape((num_examples)))
for i in range(num_examples):
digit_count = np.empty((10))
rates = list(training['x'][i%num_examples,:,:].reshape((n_input)) / 8000. * input_intensity)
label = int(training['y'][i%num_examples])
poisson_pop.set_var('frequency', rates)
poisson_pop.set_var('timeStepToSpike',0.0)
lif_e_pop.set_var("SpikeNumber",0)
model.push_state_to_device("lif_e_pop")
lif_i_pop.set_var("SpikeNumber",0)
model.push_state_to_device("lif_i_pop")
spike_number_view = lif_e_pop.vars["SpikeNumber"].view
model.push_state_to_device("poisson_pop")
while model.t < single_example_time:
model.step_time()
model.pull_state_from_device(input_e_pop)
model.pull_state_from_device(lif_e_pop)
for j in range(n_e):
# print(spike_number_view[j])
digit_count[neuron_labels[j]] += spike_number_view[j]
pred = np.argmax(digit_count,axis=0)
predictions.append(pred)
# print(predictions[:50])
# print(y_list[:50])
print("Accuracy: {}%".format(accuracy(predictions,y_list)))
"""