-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgroup.R
38 lines (30 loc) · 1.45 KB
/
group.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#Opening the data
data<-read.delim(choose.files())
#relative fitness
mean_value_of_number_of_seeds<-mean(data$NSeeds)
relative_fitness<-data$NSeeds/mean_value_of_number_of_seeds
#Standardize and showing what Scale function is doing
standard_dev_value_Nflowers<-sqrt(var(data$NFlowers))
mean_Nflowers<-mean(data$NFlowers)
standard_value_of_Nflowers<-(data$NFlowers-mean_Nflowers)/standard_dev_value_Nflowers
standard_value_of_PetL<-scale(data$PetL)
lm(standard_value_of_PetL~standard_value_of_Nflowers)
#Plots
plot(relative_fitness~standard_value_of_Nflowers)
plot(relative_fitness~standard_value_of_PetL)
#Linear and Non linear models
lm(relative_fitness~standard_value_of_Nflowers)
lm(relative_fitness~standard_value_of_Nflowers+I(standard_value_of_Nflowers^2))
#Only an small deviation
lm(relative_fitness~standard_value_of_PetL+I(standard_value_of_PetL^2))
lm(relative_fitness~standard_value_of_PetL)
lm(relative_fitness~standard_value_of_PetL+standard_value_of_Nflowers)
lm(relative_fitness~standard_value_of_PetL+standard_value_of_Nflowers+I(standard_value_of_Nflowers^2)+I(standard_value_of_PetL^2))
cor.test(standard_value_of_PetL,relative_fitness)
cor.test(standard_value_of_Nflowers,relative_fitness)
cor.test(standard_value_of_Nflowers,standard_value_of_PetL)
#matrix for question 2
B<-matrix(c(0.95,0.12,0.07),nrow=3)
matri1<-matrix(c(0.03,0.12,-0.28,0.12,0.78,-0.15,-0.28,-0.15,0.63),nrow=3,ncol=3,byrow = TRUE)
matri1%*%B
data