forked from NVIDIA/TensorRT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils_ammo.py
160 lines (144 loc) · 5.98 KB
/
utils_ammo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import torch
from ammo.torch.quantization import utils as quant_utils
from ammo.torch.quantization.calib.max import MaxCalibrator
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
class PercentileCalibrator(MaxCalibrator):
def __init__(self, num_bits=8, axis=None, unsigned=False, track_amax=False, **kwargs):
super().__init__(num_bits, axis, unsigned, track_amax)
self.percentile = kwargs["percentile"]
self.total_step = kwargs["total_step"]
self.global_min = kwargs["global_min"]
self.data = {}
self.i = 0
def collect(self, x):
"""Tracks the absolute max of all tensors.
Args:
x: A tensor
Raises:
RuntimeError: If amax shape changes
"""
# Swap axis to reduce.
axis = self._axis if isinstance(self._axis, (list, tuple)) else [self._axis]
# Handle negative axis.
axis = [x.dim() + i if isinstance(i, int) and i < 0 else i for i in axis]
reduce_axis = []
for i in range(x.dim()):
if i not in axis:
reduce_axis.append(i)
local_amax = quant_utils.reduce_amax(x, axis=reduce_axis).detach()
_cur_step = self.i % self.total_step
if _cur_step not in self.data.keys():
self.data[_cur_step] = local_amax
else:
if self.global_min:
self.data[_cur_step] = torch.min(self.data[_cur_step], local_amax)
else:
self.data[_cur_step] += local_amax
if self._track_amax:
raise NotImplementedError
self.i += 1
def compute_amax(self):
"""Return the absolute max of all tensors collected."""
up_lim = int(self.total_step * self.percentile)
amaxs_values = [self.data[i] / self.total_step for i in range(0, up_lim)]
act_amax = torch.vstack(amaxs_values).min(axis=0)[0]
self._calib_amax = act_amax
return self._calib_amax
def __str__(self):
s = "PercentileCalibrator"
return s.format(**self.__dict__)
def __repr__(self):
s = "PercentileCalibrator("
s += super(MaxCalibrator, self).__repr__()
s += " calib_amax={_calib_amax}"
if self._track_amax:
s += " amaxs={_amaxs}"
s += ")"
return s.format(**self.__dict__)
def filter_func(name):
pattern = re.compile(
r".*(time_emb_proj|time_embedding|conv_in|conv_out|conv_shortcut|add_embedding).*"
)
return pattern.match(name) is not None
def quantize_lvl(unet, quant_level=2.5):
"""
We should disable the unwanted quantizer when exporting the onnx
Because in the current ammo setting, it will load the quantizer amax for all the layers even
if we didn't add that unwanted layer into the config during the calibration
"""
for name, module in unet.named_modules():
if isinstance(module, (torch.nn.Conv2d, LoRACompatibleConv)):
module.input_quantizer.enable()
module.weight_quantizer.enable()
elif isinstance(module, (torch.nn.Linear, LoRACompatibleLinear)):
if (
(quant_level >= 2 and "ff.net" in name)
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
or quant_level == 3
):
module.input_quantizer.enable()
module.weight_quantizer.enable()
else:
module.input_quantizer.disable()
module.weight_quantizer.disable()
def get_int8_config(
model, quant_level=2.5, alpha=0.8, percentile=1.0, num_inference_steps=20, global_min=False
):
quant_config = {
"quant_cfg": {
"*lm_head*": {"enable": False},
"*output_layer*": {"enable": False},
"default": {"num_bits": 8, "axis": None},
},
"algorithm": {"method": "smoothquant", "alpha": alpha},
}
for name, module in model.named_modules():
w_name = f"{name}*weight_quantizer"
i_name = f"{name}*input_quantizer"
if w_name in quant_config["quant_cfg"].keys() or i_name in quant_config["quant_cfg"].keys():
continue
if filter_func(name):
continue
if isinstance(module, (torch.nn.Linear, LoRACompatibleLinear)):
if (
(quant_level >= 2 and "ff.net" in name)
or (quant_level >= 2.5 and ("to_q" in name or "to_k" in name or "to_v" in name))
or quant_level == 3
):
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0}
quant_config["quant_cfg"][i_name] = {"num_bits": 8, "axis": -1}
elif isinstance(module, (torch.nn.Conv2d, LoRACompatibleConv)):
quant_config["quant_cfg"][w_name] = {"num_bits": 8, "axis": 0}
quant_config["quant_cfg"][i_name] = {
"num_bits": 8,
"axis": None,
"calibrator": (
PercentileCalibrator,
(),
{
"num_bits": 8,
"axis": None,
"percentile": percentile,
"total_step": num_inference_steps,
"global_min": global_min,
},
),
}
return quant_config