-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMIP_models.py
216 lines (144 loc) · 7.69 KB
/
MIP_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Maximise the probability of getting gas
from gurobipy import Model, GRB, quicksum
import copy
## Depot is needed as dummy node in our formulation as we have the constraint 4 and constraint 1
## Big M required in objective as all nodes or arcs dont need to be visited. In that case
def minimise_expected_time(data):
# Getting all the parameters
data1 = copy.deepcopy(data)
n = data1.n
V= data1.V
N= data1.N
AO= data1.AO
p_log = data1.p_log
p_log2 = data1.p_log2
d = data1.d
f = data1.f
mi = data1.mi
t = data1.t
# Initiating Model
m = Model('Gasoline Search')
# Defining variable
x = m.addVars(AO, vtype = GRB.BINARY)
#y = m.addVars(VO, vtype = GRB.BINARY)
# Defining the objective function
#m.setObjective(quicksum(t[i,j]*x[i,j,k] for i in V for j in V if j != i for k in A), "minimize")
m.setObjective(quicksum((p_log[j])*x[i,j,k] + (p_log2[j])*x[i,j,m]
for k in range(1,n+1) for m in range(1,k) for i in V for j in N if j != i )
+ quicksum(t[i,j]*x[i,j,l] for k in range(1,n+1) for l in range(1,k+1) for i in V for j in N if j != i)
- quicksum(1000*x[i,j,k] for k in range(1,n+1) for i in V for j in N if j != i), GRB.MINIMIZE)
# Defining constraints
# Constraint 1 : Length of the path constrained by the fuel left
m.addConstr(quicksum(d[i,j]*x[i,j,k] for k in range(1,n+1)for i in V for j in V if j != i ) <= f*mi)
# Constraint 2 : Only one arc can be the kth arc in the path
m.addConstrs(quicksum(x[i,j,k] for i in V for j in V if j != i ) <= 1 for k in range(1,n+2))
# Constraint 3: Each node should be visited only once
m.addConstrs(quicksum(x[i,j,k] for k in range(1,n+2) for i in V if i!= j) <= 1 for j in V )
# Constraint 4 : Destination of the kth arch is the origin of the k+1 the arc
m.addConstrs(quicksum(x[i,j,k] - x[j,i,k+1] for i in V if i!=j) == 0 for k in range(1,n+1)
for j in N)
# Constraint 5: 1st arc starts at the origin
m.addConstr(quicksum(x[0,j,1] for j in V if j != 0) == 1)
# Constraint 5 : Constraint for vertex order variable
#m.addConstrs(y[j,k] - quicksum(x[i,j,k] for i in V if j != i ) == 0 for j in N for k in range(1,n+1))
# Constraint 6: Depot/Dummy is the last node to be visited
m.addConstr(quicksum(x[i,0,n+1] for i in N) == 1)
# optimizing the model
m.optimize()
# Active Arc-orders
arc_orders = [a for a in AO if x[a].x >0.99]
arc_orders = [a for j in N for a in arc_orders if a[2]== j]
return arc_orders
# minimise expected_time without distance constraint
def minimise_expected_time2(data):
data1 = copy.deepcopy(data)
# Getting all the parameters
n = data1.n
V= data1.V
N= data1.N
AO= data1.AO
p_log = data1.p_log
p_log2 = data1.p_log2
#d = data1.d
#f = data1.f
#mi = data1.mi
t = data1.t
# Initiating Model
m = Model('Gasoline Search')
# Defining variable
x = m.addVars(VO, vtype = GRB.BINARY)
#y = m.addVars(VO, vtype = GRB.BINARY)
# Defining the objective function
#m.setObjective(quicksum(t[i,j]*x[i,j,k] for i in V for j in V if j != i for k in A), "minimize")
m.setObjective(quicksum((p_log[j])*x[i,j,k] + (p_log2[j])*x[i,j,m]
for k in range(1,n+1) for m in range(1,k) for i in V for j in N if j != i )
+ quicksum(t[i,j]*x[i,j,l] for k in range(1,n+1) for l in range(1,k+1) for i in V for j in N if j != i)
- quicksum(1000*x[i,j,k] for k in range(1,n+1) for i in V for j in N if j != i), GRB.MINIMIZE)
# Defining constraints
#Constraint 1 : Lenght of the path constrained by the fuel left
#m.addConstr(quicksum(d[i,j]*x[i,j,k] for k in range(1,n+1)for i in V for j in V if j != i ) <= f*mi)
# Constraint 2 : Only one arc can be the kth arc in the path
m.addConstrs(quicksum(x[i,j,k] for i in V for j in V if j != i ) <= 1 for k in range(1,n+1))
# Constraint 3 : 1st arc starts at the origin
m.addConstr(quicksum(x[0,j,1] for j in V if j != 0) == 1)
# Constraint 4 : Destination of the kth arch is the origin of the k+1 the arc
m.addConstrs(quicksum(x[i,j,k] - x[j,i,k+1] for i in V if i!=j) == 0 for k in range(1,n+1)
for j in N)
# Constraint 5 : Constraint for vertex order variable
#m.addConstrs(y[j,k] - quicksum(x[i,j,k] for i in V if j != i ) == 0 for j in N for k in range(1,n+1))
# Constraint 5: Each node should be visited only once
m.addConstrs(quicksum(x[i,j,k] for k in range(1,n+2) for i in V if i!= j) <= 1 for j in V )
# Constraint 6: Depot/Dummy is the last node to be visited
m.addConstr(quicksum(x[i,0,n+1] for i in N) == 1)
# optimizing the model
m.optimize()
# Active Arc-orders
arc_orders = [a for a in AO if x[a].x >0.99]
arc_orders = [a for j in N for a in arc_orders if a[2]== j]
return arc_orders
def maximise_probability(data):
data1 = copy.deepcopy(data)
# Getting all the parameters
n = data1.n
V= data1.V
N= data1.N
AO= data1.AO
p_log = data1.p_log
p_log2 = data1.p_log2
d = data1.d
f = data1.f
mi = data1.mi
t = data1.t
# Initiating Model
m = Model('Gasoline Search')
# Defining variable
x = m.addVars(AO, vtype = GRB.BINARY)
#y = m.addVars(VO, vtype = GRB.BINARY)
# Defining the objective function
#m.setObjective(quicksum(t[i,j]*x[i,j,k] for i in V for j in V if j != i for k in A), "minimize")
m.setObjective(quicksum((p_log[j])*x[i,j,k] + (p_log2[j])*x[i,j,m]
for k in range(1,n+1) for m in range(1,k) for i in V for j in N if j != i )
+ quicksum(t[i,j]*x[i,j,l] for k in range(1,n+1) for l in range(1,k+1) for i in V for j in N if j != i)
- quicksum(1000*x[i,j,k] for k in range(1,n+1) for i in V for j in N if j != i), GRB.MINIMIZE)
# Defining constraints
# Constraint 1 : Lenght of the path constrained by the fuel left
m.addConstr(quicksum(d[i,j]*x[i,j,k] for k in range(1,n+1)for i in V for j in V if j != i ) <= f*mi)
# Constraint 2 : Only one arc can be the kth arc in the path
m.addConstrs(quicksum(x[i,j,k] for i in V for j in V if j != i ) <= 1 for k in range(1,n+2))
# Constraint 3 : 1st arc starts at the origin
m.addConstr(quicksum(x[0,j,1] for j in V if j != 0) == 1)
# Constraint 4 : Destination of the kth arch is the origin of the k+1 the arc
m.addConstrs(quicksum(x[i,j,k] - x[j,i,k+1] for i in V if i!=j) == 0 for k in range(1,n+1)
for j in N)
# Constraint 5 : Constraint for vertex order variable
#m.addConstrs(y[j,k] - quicksum(x[i,j,k] for i in V if j != i ) == 0 for j in N for k in range(1,n+1))
# Constraint 5: Each node should be visited only once
m.addConstrs(quicksum(x[i,j,k] for k in range(1,n+2) for i in V if i!= j) <= 1 for j in V )
# Constraint 6: Depot/Dummy is the last node to be visited
m.addConstr(quicksum(x[i,0,n+1] for i in N) == 1)
# optimizing the model
m.optimize()
# Active Arc-orders
arc_orders = [a for a in AO if x[a].x >0.99]
arc_orders = [a for j in N for a in arc_orders if a[2]== j]
return arc_orders